skip to main content


Search for: All records

Award ID contains: 1756524

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The production of dihydrogen (H2) is an enigmatic yet obligate component of biological dinitrogen (N2) fixation. This study investigates the effect on H2production by N2fixing cyanobacteria when they are exposed to either air or a gas mixture consisting of argon, oxygen, and carbon dioxide (Ar:O2:CO2). In the absence of N2, nitrogenase diverts the flow of electrons to the production of H2, which becomes a measure of Total Nitrogenase Activity (TNA). This method of argon‐induced hydrogen production (AIHP) is much less commonly used to infer rates of N2fixation than the acetylene reduction (AR) assay. We provide here a full evaluation of the AIHP method and demonstrate its ability to achieve high‐resolution measurements of TNA in a gas exchange flow‐through system. Complete diel profiles of H2production were obtained for N2fixing cyanobacteria despite the absence of N2that broadly reproduced the temporal patterns observed by the AR assay. Comparison of H2production under air versus Ar:O2:CO2revealed the efficiency of electron usage during N2fixation and place these findings in the broader context of cell metabolism. Ultimately, AIHP is demonstrated to be a viable alternative to the AR assay with several additional merits that provide an insight into cell physiology and promise for successful field application.

     
    more » « less
  2. null (Ed.)
    Abstract The microbial fixation of N 2 is the largest source of biologically available nitrogen (N) to the oceans. However, it is the most energetically expensive N-acquisition process and is believed inhibited when less energetically expensive forms, like dissolved inorganic N (DIN), are available. Curiously, the cosmopolitan N 2 -fixing UCYN-A/haptophyte symbiosis grows in DIN-replete waters, but the sensitivity of their N 2 fixation to DIN is unknown. We used stable isotope incubations, catalyzed reporter deposition fluorescence in-situ hybridization (CARD-FISH), and nanoscale secondary ion mass spectrometry (nanoSIMS), to investigate the N source used by the haptophyte host and sensitivity of UCYN-A N 2 fixation in DIN-replete waters. We demonstrate that under our experimental conditions, the haptophyte hosts of two UCYN-A sublineages do not assimilate nitrate (NO 3 − ) and meet little of their N demands via ammonium (NH 4 + ) uptake. Instead the UCYN-A/haptophyte symbiosis relies on UCYN-A N 2 fixation to supply large portions of the haptophyte’s N requirements, even under DIN-replete conditions. Furthermore, UCYN-A N 2 fixation rates, and haptophyte host carbon fixation rates, were at times stimulated by NO 3 − additions in N-limited waters suggesting a link between the activities of the bulk phytoplankton assemblage and the UCYN-A/haptophyte symbiosis. The results suggest N 2 fixation may be an evolutionarily viable strategy for diazotroph–eukaryote symbioses, even in N-rich coastal or high latitude waters. 
    more » « less
  3. null (Ed.)
  4. Gilbert, Jack (Ed.)
    ABSTRACT The cyanobacterium Trichodesmium is an important contributor of new nitrogen (N) to the surface ocean, but its strategies for protecting the nitrogenase enzyme from inhibition by oxygen (O 2 ) remain poorly understood. We present a dynamic physiological model to evaluate hypothesized conditions that would allow Trichodesmium to carry out its two conflicting metabolic processes of N 2 fixation and photosynthesis. First, the model indicates that managing cellular O 2 to permit N 2 fixation requires high rates of respiratory O 2 consumption. The energetic cost amounts to ∼80% of daily C fixation, comparable to the observed diminution of the growth rate of Trichodesmium relative to other phytoplankton. Second, by forming a trichome of connected cells, Trichodesmium can segregate N 2 fixation from photosynthesis. The transfer of stored C to N-fixing cells fuels the respiratory O 2 consumption that protects nitrogenase, while the reciprocal transfer of newly fixed N to C-fixing cells supports cellular growth. Third, despite Trichodesmium lacking the structural barrier found in heterocystous species, the model predicts low diffusivity of cell membranes, a function that may be explained by the presence of Gram-negative membrane, production of extracellular polysaccharide substances (EPS), and “buffer cells” that intervene between N 2 -fixing and photosynthetic cells. Our results suggest that all three factors—respiratory protection, trichome formation, and diffusion barriers—represent essential strategies that, despite their energetic costs, facilitate the growth of Trichodesmium in the oligotrophic aerobic ocean and permit it to be a major source of new reactive nitrogen. IMPORTANCE Trichodesmium is a major nitrogen-fixing cyanobacterium and exerts a significant influence on the oceanic nitrogen cycle. It is also a widely used model organism in laboratory studies. Since the nitrogen-fixing enzyme nitrogenase is extremely sensitive to oxygen, how these surface-dwelling plankton manage the two conflicting processes of nitrogen fixation and photosynthesis has been a long-standing question. In this study, we developed a simple model of metabolic fluxes of Trichodesmium capturing observed daily cycles of photosynthesis, nitrogen fixation, and boundary layer oxygen concentrations. The model suggests that forming a chain of cells for spatially segregating nitrogen fixation and photosynthesis is essential but not sufficient. It also requires a barrier against oxygen diffusion and high rates of oxygen scavenging by respiration. Finally, the model indicates an extremely short life span of oxygen-enabling cells to instantly create a low-oxygen environment upon deactivation of photosynthesis. 
    more » « less