skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: Evaluation of argon‐induced hydrogen production as a method to measure nitrogen fixation by cyanobacteria

The production of dihydrogen (H2) is an enigmatic yet obligate component of biological dinitrogen (N2) fixation. This study investigates the effect on H2production by N2fixing cyanobacteria when they are exposed to either air or a gas mixture consisting of argon, oxygen, and carbon dioxide (Ar:O2:CO2). In the absence of N2, nitrogenase diverts the flow of electrons to the production of H2, which becomes a measure of Total Nitrogenase Activity (TNA). This method of argon‐induced hydrogen production (AIHP) is much less commonly used to infer rates of N2fixation than the acetylene reduction (AR) assay. We provide here a full evaluation of the AIHP method and demonstrate its ability to achieve high‐resolution measurements of TNA in a gas exchange flow‐through system. Complete diel profiles of H2production were obtained for N2fixing cyanobacteria despite the absence of N2that broadly reproduced the temporal patterns observed by the AR assay. Comparison of H2production under air versus Ar:O2:CO2revealed the efficiency of electron usage during N2fixation and place these findings in the broader context of cell metabolism. Ultimately, AIHP is demonstrated to be a viable alternative to the AR assay with several additional merits that provide an insight into cell physiology and promise for successful field application.

 
more » « less
Award ID(s):
1756524
NSF-PAR ID:
10449249
Author(s) / Creator(s):
 ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Phycology
Volume:
57
Issue:
3
ISSN:
0022-3646
Page Range / eLocation ID:
p. 863-873
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Nitrogen-fixing (N 2 ) cyanobacteria provide bioavailable nitrogen to vast ocean regions but are in turn limited by iron (Fe) and/or phosphorus (P), which may force them to employ alternative nitrogen acquisition strategies. The adaptive responses of nitrogen fixers to global-change drivers under nutrient-limited conditions could profoundly alter the current ocean nitrogen and carbon cycles. Here, we show that the globally important N 2 fixer Trichodesmium fundamentally shifts nitrogen metabolism toward organic-nitrogen scavenging following long-term high-CO 2 adaptation under iron and/or phosphorus (co)limitation. Global shifts in transcripts and proteins under high-CO 2 /Fe-limited and/or P-limited conditions include decreases in the N 2 -fixing nitrogenase enzyme, coupled with major increases in enzymes that oxidize trimethylamine (TMA). TMA is an abundant, biogeochemically important organic nitrogen compound that supports rapid Trichodesmium growth while inhibiting N 2 fixation. In a future high-CO 2 ocean, this whole-cell energetic reallocation toward organic nitrogen scavenging and away from N 2 fixation may reduce new-nitrogen inputs by Trichodesmium while simultaneously depleting the scarce fixed-nitrogen supplies of nitrogen-limited open-ocean ecosystems. IMPORTANCE Trichodesmium is among the most biogeochemically significant microorganisms in the ocean, since it supplies up to 50% of the new nitrogen supporting open-ocean food webs. We used Trichodesmium cultures adapted to high-CO 2 conditions for 7 years, followed by additional exposure to iron and/or phosphorus (co)limitation. We show that “future ocean” conditions of high CO 2 and concurrent nutrient limitation(s) fundamentally shift nitrogen metabolism away from nitrogen fixation and instead toward upregulation of organic nitrogen-scavenging pathways. We show that the responses of Trichodesmium to projected future ocean conditions include decreases in the nitrogen-fixing nitrogenase enzymes coupled with major increases in enzymes that oxidize the abundant organic nitrogen source trimethylamine (TMA). Such a shift toward organic nitrogen uptake and away from nitrogen fixation may substantially reduce new-nitrogen inputs by Trichodesmium to the rest of the microbial community in the future high-CO 2 ocean, with potential global implications for ocean carbon and nitrogen cycling. 
    more » « less
  2. Martiny, Jennifer B. (Ed.)
    ABSTRACT Peat mosses of the genus Sphagnum are ecosystem engineers that frequently predominate over photosynthetic production in boreal peatlands. Sphagnum spp. host diverse microbial communities capable of nitrogen fixation (diazotrophy) and methane oxidation (methanotrophy), thereby potentially supporting plant growth under severely nutrient-limited conditions. Moreover, diazotrophic methanotrophs represent a possible “missing link” between the carbon and nitrogen cycles, but the functional contributions of the Sphagnum -associated microbiome remain in question. A combination of metagenomics, metatranscriptomics, and dual-isotope incorporation assays was applied to investigate Sphagnum microbiome community composition across the North American continent and provide empirical evidence for diazotrophic methanotrophy in Sphagnum -dominated ecosystems. Remarkably consistent prokaryotic communities were detected in over 250 Sphagnum SSU rRNA libraries from peatlands across the United States (5 states, 17 bog/fen sites, 18 Sphagnum species), with 12 genera of the core microbiome comprising 60% of the relative microbial abundance. Additionally, nitrogenase ( nifH ) and SSU rRNA gene amplicon analysis revealed that nitrogen-fixing populations made up nearly 15% of the prokaryotic communities, predominated by Nostocales cyanobacteria and Rhizobiales methanotrophs. While cyanobacteria comprised the vast majority (>95%) of diazotrophs detected in amplicon and metagenome analyses, obligate methanotrophs of the genus Methyloferula (order Rhizobiales ) accounted for one-quarter of transcribed nifH genes. Furthermore, in dual-isotope tracer experiments, members of the Rhizobiales showed substantial incorporation of 13 CH 4 and 15 N 2 isotopes into their rRNA. Our study characterizes the core Sphagnum microbiome across large spatial scales and indicates that diazotrophic methanotrophs, here defined as obligate methanotrophs of the rare biosphere ( Methyloferula spp. of the Rhizobiales ) that also carry out diazotrophy, play a keystone role in coupling of the carbon and nitrogen cycles in nutrient-poor peatlands. IMPORTANCE Nitrogen availability frequently limits photosynthetic production in Sphagnum moss-dominated high-latitude peatlands, which are crucial carbon-sequestering ecosystems at risk to climate change effects. It has been previously suggested that microbial methane-fueled fixation of atmospheric nitrogen (N 2 ) may occur in these ecosystems, but this process and the organisms involved are largely uncharacterized. A combination of omics (DNA and RNA characterization) and dual-isotope incorporation approaches illuminated the functional diversity of Sphagnum -associated microbiomes and defined 12 bacterial genera in its core microbiome at the continental scale. Moreover, obligate diazotrophic methanotrophs showed high nitrogen fixation gene expression levels and incorporated a substantial amount of atmospheric nitrogen and methane-driven carbon into their biomass. Thus, these results point to a central role for members of the rare biosphere in Sphagnum microbiomes as keystone species that couple nitrogen fixation to methane oxidation in nutrient-poor peatlands. 
    more » « less
  3. Abstract

    Biological nitrogen fixation (BNF) by canonical molybdenum and complementary vanadium and iron-only nitrogenase isoforms is the primary natural source of newly fixed nitrogen. Understanding controls on global nitrogen cycling requires knowledge of the isoform responsible for environmental BNF. The isotopic acetylene reduction assay (ISARA), which measures carbon stable isotope (13C/12C) fractionation between ethylene and acetylene in acetylene reduction assays, is one of the few methods that can quantify isoform-specific BNF fluxes. Application of classical ISARA has been challenging because environmental BNF activity is often too low to generate sufficient ethylene for isotopic analyses. Here we describe a high sensitivity method to measure ethylene δ13C by in-line coupling of ethylene preconcentration to gas chromatography-combustion-isotope ratio mass spectrometry (EPCon-GC-C-IRMS). Ethylene requirements in samples with 10% v/v acetylene are reduced from > 500 to ~ 20 ppmv (~ 2 ppmv with prior offline acetylene removal). To increase robustness by reducing calibration error, single nitrogenase-isoformAzotobacter vinelandiimutants and environmental sample assays rely on a common acetylene source for ethylene production. Application of the Low BNF activity ISARA (LISARA) method to low nitrogen-fixing activity soils, leaf litter, decayed wood, cryptogams, and termites indicates complementary BNF in most sample types, calling for additional studies of isoform-specific BNF.

     
    more » « less
  4. Abstract

    The ratio of dissolved oxygen to argon in seawater is frequently employed to estimate rates of net community production (NCP) in the oceanic mixed layer. The in situ O2/Ar‐based method accounts for many physical factors that influence oxygen concentrations, permitting isolation of the biological oxygen signal produced by the balance of photosynthesis and respiration. However, this technique traditionally relies upon several assumptions when calculating the mixed‐layer O2/Ar budget, most notably the absence of vertical fluxes of O2/Ar and the principle that the air‐sea gas exchange of biological oxygen closely approximates net productivity rates. Employing a Lagrangian study design and leveraging data outputs from a regional physical oceanographic model, we conducted in situ measurements of O2/Ar in the California Current Ecosystem in spring 2016 and summer 2017 to evaluate these assumptions within a “worst‐case” field environment. Quantifying vertical fluxes, incorporating nonsteady state changes in O2/Ar, and comparing NCP estimates evaluated over several day versus longer timescales, we find differences in NCP metrics calculated over different time intervals to be considerable, also observing significant potential effects from vertical fluxes, particularly advection. Additionally, we observe strong diel variability in O2/Ar and NCP rates at multiple stations. Our results reemphasize the importance of accounting for vertical fluxes when interpreting O2/Ar‐derived NCP data and the potentially large effect of nonsteady state conditions on NCP evaluated over shorter timescales. In addition, diel cycles in surface O2/Ar can also bias interpretation of NCP data based on local productivity and the time of day when measurements were made.

     
    more » « less
  5. Abstract

    As part of a long-term study on the effects of nitrogen (N) loading in a shallow temperate lagoon, we measured rates of N2fixation associated with seagrass (Zostera marina) epiphytes during the summer from 2005 to 2019, at two sites along a gradient from where high N groundwater enters the system (denoted SH) to a more well-flushed outer harbor (OH). The data presented here are the first such long-term N2fixation estimates for any seagrass system and one of the very few reported for the phyllosphere in a temperate system. Mean daily N2fixation was estimated from light and dark measurements using the acetylene reduction assay intercalibrated using both incorporation of15N2into biomass and a novel application of the N2:Ar method. Surprisingly, despite a large inorganic N input from a N-contaminated groundwater plume, epiphytic N2fixation rates were moderately to very high for a seagrass system (OH site 14-year mean of 0.94 mmol N m−2 d−1), with the highest rates (2.6 mmol N m−2 d−1) measured at the more N-loaded eutrophic site (SH) where dissolved inorganic N was higher and soluble reactive phosphorus was lower than in the better-flushed OH. Over 95% of the total N2fixation measured was in the light, suggesting the importance of cyanobacteria in the epiphyte assemblages. We observed large inter-annual variation both within and across the two study sites (range from 0.1 to 2.6 mmol N fixed m−2d−1), which we suggest is in part related to climatic variation. We estimate that input from phyllosphere N2fixation over the study period contributes on average an additional 20% to the total daily N load per area within the seagrass meadow.

     
    more » « less