The Norian–Rhaetian boundary (Late Triassic) represents an important precursor extinction event to the end- Triassic mass extinction, but the biotic and geochemical shifts are not well-understood due to poor stratigraphic constraints. Here we examine the microfossil record for metazoans and protists on a Panthalassan carbonate ramp (Gabbs Formation, Nevada, U.S.A.) during the late Norian to mid-Rhaetian, and correlate changes in these assemblages with macrofossil shifts and geochemical data (strontium and carbon isotopes). In the latest Norian, demosponge spicules represent a small proportion of shallow marine biosediments. Demosponges are joined in the earliest Rhaetian by increasingly abundant hypersilicified sponge spicules and silica-limited hexactinellid sponge spicules synchronous with a negative strontium isotope excursion indicating increased hydrothermal or volcanic activity. Common carbonate microfossils such as echinoderm ossicles and ostracods are typically silicified in these deposits as well, suggesting increased silicic porewater. The source for increased dissolved silica in shallow marine systems is suggested to be hydrothermal vent degassing, likely associated with increased tectonic rifting activity. Mid-Rhaetian microfossil assemblages exhibit evidence for intermitted anoxia in reducing conditions, supporting a scenario in which environmental stress was a prolonged feature of much of the Rhaetian Stage, rather than a short-term event in the terminal Rhaetian. While there is no marine sedimentary record of volcanism recognized for this interval, biosedimentary assemblages may serve as proxies for geochemical conditions associated with rifting.
more »
« less
Isotopic analyses of Ordovician–Silurian siliceous skeletons indicate silica‐depleted Paleozoic oceans
Abstract The Phanerozoic Eon marked a major transition from marine silica deposition exclusively via abiotic pathways to a system dominated by biogenic silica sedimentation. For decades, prevailing ideas predicted this abiotic‐to‐biogenic transition were marked by a significant decrease in the concentration of dissolved silica in seawater; however, due to the lower perceived abundance and uptake affinity of sponges and radiolarians relative to diatoms, marine dissolved silica is thought to have remained elevated above modern values until the Cenozoic radiation of diatoms. Studies of modern marine silica biomineralizers demonstrated that the Si isotope ratios (δ30Si) of sponge spicules and planktonic silica biominerals produced by diatoms or radiolarians can be applied as quantitative proxies for past seawater dissolved silica concentrations due to differences in Si isotope fractionations among these organisms. We undertook 446 ion microprobe analyses of δ30Si and δ18O of sponge spicules and radiolarians from Ordovician–Silurian chert deposits of the Mount Hare Formation in Yukon, Canada. These isotopic data showed that sponges living in marine slope and basinal environments displayed small Si isotope fractionations relative to coeval radiolarians. By constructing a mathematical model of the major fluxes and reservoirs in the marine silica cycle and the physiology of silica biomineralization, we found that the concentration of dissolved silica in seawater was less than ~150 μM during early Paleozoic time—a value that is significantly lower than previous estimates. We posit that the topology of the early Paleozoic marine silica cycle resembled that of modern oceans much more closely than previously assumed.
more »
« less
- Award ID(s):
- 1922966
- PAR ID:
- 10449261
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Geobiology
- Volume:
- 19
- Issue:
- 5
- ISSN:
- 1472-4677
- Format(s):
- Medium: X Size: p. 460-472
- Size(s):
- p. 460-472
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Diatoms are major contributors to marine primary productivity and carbon export due to their rapid growth in high-nutrient environments and their heavy silica ballast. Their contributions are highly modified in high-nutrient low-chlorophyll regions due to the decoupling of upper-ocean silicon and carbon cycling caused by low iron (Fe). The Si cycle and the role of diatoms in the biological carbon pump was examined at Ocean Station Papa (OSP) in the HNLC region of the northeastern subarctic Pacific during the NASA EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field study. Sampling occurred during the annual minimum in surface silicic acid (Si(OH)4) concentration. Biogenic silica (bSi) concentrations were low, being in the tens of nanomolar range, despite high Si(OH)4 concentrations of about 15 μM. On average, the >5.0-µm particle size fraction dominated Si dynamics, accounting for 65% of bSi stocks and 81% of Si uptake compared to the small fraction (0.6–5.0 μm). Limitation of Si uptake was detected in the small, but not the large, size fraction. Growth rate in small diatoms was limited by Fe, while their Si uptake was restricted by Si(OH)4 concentration, whereas larger diatoms were only growth-limited by Fe. About a third of bSi production was exported out of the upper 100 m. The contribution of diatoms to carbon export (9–13%) was about twice their contribution to primary productivity (3–7%). The combination of low bSi production, low diatom primary productivity and high bSi export efficiency at OSP was more similar to the dynamics in the subtropical gyres than to other high-nutrient low-chlorophyll regions.more » « less
-
Changes in the concentration and isotopic composition of the major constituents in seawater reflect changes in their sources and sinks. Because many of the processes controlling these sources and sinks are tied to the cycling of carbon, such records can provide insights into what drives past changes in atmospheric carbon dioxide and climate. Here, we present a stable strontium (Sr) isotope record derived from pelagic marine barite. Our δ88/86Sr record exhibits a complex pattern, first declining between 35 and 15 million years ago (Ma), then increasing from 15 to 5 Ma, before declining again from ~5 Ma to the present. Numerical modeling reveals that the associated fluctuations in seawater Sr concentrations are about ±25% relative to present-day seawater. We interpret the δ88/86Sr data as reflecting changes in the mineralogy and burial location of biogenic carbonates.more » « less
-
The causal effects among uplift, climate, and continental weathering cannot be fully addressed using presently available geochemical proxies. However, stable potassium (K) isotopes can potentially overcome the limitations of existing isotopic proxies. Here we report on a systematic investigation of K isotopes in dissolved load and sediments from major rivers and their tributaries in China, which have drainage basins with varied climate, lithology, and topography. Our results show that during silicate weathering, heavy K isotopes are preferentially partitioned into aqueous solutions. Moreover, δ41K values of riverine dissolved load vary remarkably and correlate negatively with the chemical weathering intensity of the drainage basin. This correlation allows an estimate of the average K isotope composition of global riverine runoff (δ41K = −0.22‰), as well as modeling of the global K cycle based on mass balance calculations. Modeling incorporating K isotope mass balance better constrains estimated K fluxes for modern global K cycling, and the results show that the δ41K value of seawater is sensitive to continental weathering intensity changes. Thus, it is possible to use the δ41K record of paleo-seawater to infer continental weathering intensity through Earth’s history.more » « less
-
The contribution of diatoms to the production and export of organic carbon is highly modified in high-nutrient low-chlorophyll (HNLC) regions due to the decoupling of upper-ocean silicon and carbon cycling caused by low iron. The Si cycle and the role of diatoms in the biological carbon pump was examined at Ocean Station Papa (OSP) in the HNLC region of the northeastern subarctic Pacific during the NASA EX port Processes in the Ocean from RemoTe Sensing (EXPORTS) field study. Sampling occurred during the annual minimum in surface silicic acid concentration, [Si(OH)4 ]. Biogenic silica (bSi) concentrations were low being in the tens of nanomolar range despite high [Si(OH) 4 ], ~15 μM. On average the > 5.0 μm particle size fraction dominated Si dynamics accounting for 65% of bSi stocks and 81% of Si uptake compared to the small fraction (0.6 - 5.0 μm). Limitation of Si uptake was detected in the small, but not the large, size fraction. Small diatoms were co-limited with growth rate restricted by Fe and Si uptake restricted by [Si(OH) 4 ], whereas larger diatoms were only growth limited by Fe. About a third of silica production was exported out of the upper 100 m. The contribution of diatoms to carbon export (9 - 13%) was about twice their contribution to primary productivity (3 - 7%). The combination of low silica production, low diatom primary productivity and high bSi export efficiency at OSP was more similar to the dynamics in the subtropical gyres than to other HNLC regions.more » « less
An official website of the United States government
