skip to main content


Title: Ion‐Selective MXene‐Based Membranes: Current Status and Prospects
Abstract

Water pollution is a major global challenge, as conventional polymeric membranes are not adequate for water treatment anymore. Among emerging materials for water treatment, composite membranes are promising, as they have simultaneously improved water permeation and ions rejection. Recently, a new family of 2D materials called MXenes has attracted considerable attention due to their appealing properties and wide applications. MXenes can be incorporated into many polymeric materials due to their high compatibility. MXenes/polymer composite membranes have been found to have appealing electrical, thermal, mechanical, and transport properties, because of strong interactions between polymer chains and surface functional groups of MXenes and the selective nanochannels that are created. This article reviews advances made in the area of ion‐selective MXene‐based membranes for water purification. It puts the advances into perspective and provides prospects. MXenes’ properties and synthesis methods are briefly described. Strategies for the preparation of MXene‐based membranes including mixed‐matrix membranes, thin‐film nanocomposite membranes, and laminated membranes are reviewed. Recent advances in ion‐separation and water‐desalination MXene‐based membranes are elucidated. The dependence of ion‐separation performance of the membranes on fabrication techniques, MXene's interlayer spacing, and MXene's various surface terminations are elucidated. Finally, opportunities and challenges in ion‐selective MXene‐based membranes are discussed.

 
more » « less
Award ID(s):
1804285
NSF-PAR ID:
10449377
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Technologies
Volume:
6
Issue:
10
ISSN:
2365-709X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. MXenes are a newer class of 2D materials, possess with desirable properties such as large specific surface area, conductivity, and hydrophilicity, making them attractive for various environmental applications, including remediation and as membranes for water treatment. Until recently, the practical implementation of MXenes was hindered by their instability in water, although improved synthesis procedures have largely addressed this issue. Consequently, it is now important to assess the stability of MXenes in engineered environments relevant to drinking water and membrane operation (e.g. backwashing). In this study, Ti3C2Tx MXenes were found to remain stable upon exposure to an aqueous environment saturated with oxygen and to UVC and UVA light at circumneutral pH, but were transformed upon exposure to Fe(III) chloride and free chlorine. The chlorination reaction kinetics are 1st order with respect to Ti3C2Tx and free chlorine concentration, with a rate constant that increased at pH ≤ 7.5, implicating HOCl as the reactive species. We propose that MXene reactions with HOCl occur by an electrophilic attack of Cl+, forming TiO2 and degrading the MXene. AFM data shows that transformations are initiated at the edges of the MXene sheets and localized areas on the MXene, suggesting that the initial sites for Cl+ attack are defect sites and/or uncoordinated Ti atoms. During the initial stages of the oxidative degradation, the sheet-like structure of colloidal MXenes is preserved, although prolonged chlorine exposure leads to three-dimensional crystalline (anatase) TiO2 formation. The degradation of MXenes during chlorinationThis contrasts with the inertness of nanoscale TiC, highlighting the need to devise surface modification processes that will allow MXenes to resist the oxidative conditions associated with membrane regeneration/backwashing. 
    more » « less
  2. Gas separation membranes incorporating two-dimensional (2D) materials have received considerable attention in recent years, as these membranes have shown outstanding physical, structural, and thermal properties and high permeability- selectivity. The reduced thickness and diversity of the gas transport mechanisms through in-plane pores (intrinsic defects), in-plane slitlike pores, or plane-to-plane interlayer galleries provide the membranes with a significant sieving ability for energy-efficient gas separation. The discovery of 2D transition metal carbides/nitrides materials, MXenes, has provided new opportunities in the gas separation membrane area because of their hydrophilicity, rich chemistry, high flexibility, and mechanical strength. This Review puts into perspective recent advances in 2D-material-based gas separation membranes. It discusses research opportunities mainly in MXene-based gas membranes, highlights modification approaches for tuning the in-plane and plane-to-plane nanoslits, explains governing mechanisms of transport through these membranes, and compares their advantages and disadvantages with those of other 2D materials. It also discusses current challenges and provides prospects in this area. 
    more » « less
  3. null (Ed.)
    MXene/polymer nanocomposites simultaneously benefit from the attractive properties of MXenes and the flexibility and facile processability of polymers. These composites have shown superior properties such as high light-to-heat conversion, excellent electromagnetic interference shielding, and high charge storage, compared to other nanocomposites. They have applications in chemical, materials, electrical, environmental, mechanical, and biomedical engineering as well as medicine. This property-based review on MXene/polymer nanocomposites critically describes findings and achievements in these areas and puts future research directions into perspective. It surveys novel reported applications of MXene-based polymeric nanocomposites. It also covers surface modification approaches that expand the applications of MXenes in nanocomposites. 
    more » « less
  4. Transition metal carbides (MXenes) are an emerging family of highly conductive two-dimensional materials with additional functional properties introduced by surface terminations. Further modification of the surface terminations makes MXenes even more appealing for practical applications. Herein, we report a facile and environmentally benign synthesis of reduced Ti 3 C 2 T x MXene (r-Ti 3 C 2 T x ) via a simple treatment with l -ascorbic acid at room temperature. r-Ti 3 C 2 T x shows a six-fold increase in electrical conductivity, from 471 ± 49 for regular Ti 3 C 2 T x to 2819 ± 306 S m −1 for the reduced version. Additionally, we show an enhanced oxidation stability of r-Ti 3 C 2 T x as compared to regular Ti 3 C 2 T x . An examination of the surface-enhanced Raman scattering (SERS) activity reveals that the SERS enhancement factor of r-Ti 3 C 2 T x is an order of magnitude higher than that of regular Ti 3 C 2 T x . The improved SERS activity of r-Ti 3 C 2 T x is attributed to the charge transfer interaction between the MXene surface and probe molecules, re-enforced by an increased electronic density of states (DOS) at the Fermi level of r-Ti 3 C 2 T x . The findings of this study suggest that reduced MXene could be a superior choice over regular MXene, especially for the applications that employ high electronic conductivity, such as electrode materials for batteries and supercapacitors, photodetectors, and SERS-based sensors. 
    more » « less
  5. Abstract

    The mutations of bacteria due to the excessive use of antibiotics, and generation of antibiotic‐resistant bacteria have made the development of new antibacterial compounds a necessity. MXenes have emerged as biocompatible transition metal carbide structures with extensive biomedical applications. This is related to the MXenes’ unique combination of properties, including multifarious elemental compositions, 2D‐layered structure, large surface area, abundant surface terminations, and excellent photothermal and photoelectronic properties. The focus of this review is the antibacterial application of MXenes, which has attracted the attention of researchers since 2016. A quick overview of the synthesis strategies of MXenes is provided and then summarizes the effect of various factors (including structural properties, optical properties, surface charges, flake size, and dispersibility) on the biocidal activity of MXenes. The main mechanisms for deactivating bacteria by MXenes are discussed in detail including rupturing of the bacterial membrane by sharp edges of MXenes nanoflakes, generating the reactive oxygen species (ROS), and photothermal deactivating of bacteria. Hybridization of MXenes with other organic and inorganic materials can result in materials with improved biocidal activities for different applications such as wound dressings and water purification. Finally, the challenges and perspectives of MXene nanomaterials as biocidal agents are presented.

     
    more » « less