skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 9:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.

Title: Incident light and morphology determine coral productivity along a shallow to mesophotic depth gradient

While the effects of irradiance on coral productivity are well known, corals along a shallow to mesophotic depth gradient (10–100 m) experience incident irradiances determined by the optical properties of the water column, coral morphology, and reef topography.

Modeling of productivity (i.e., carbon fixation) using empirical data shows that hemispherical colonies photosynthetically fix significantly greater amounts of carbon across all depths, and throughout the day, compared with plating and branching morphologies. In addition, topography (i.e., substrate angle) further influences the rate of productivity of corals but does not change the hierarchy of coral morphologies relative to productivity.

The differences in primary productivity for different coral morphologies are not, however, entirely consistent with the known ecological distributions of these coral morphotypes in the mesophotic zone as plating corals often become the dominant morphotype with increasing depth.

Other colony‐specific features such as skeletal scattering of light, Symbiodiniaceae species, package effect, or tissue thickness contribute to the variability in the ecological distributions of morphotypes over the depth gradient and are captured in the metric known as the minimum quantum requirements.

Coral morphology is a strong proximate cause for the observed differences in productivity, with secondary effects of reef topography on incident irradiances, and subsequently the community structure of mesophotic corals.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Page Range / eLocation ID:
p. 13445-13454
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mesophotic coral reefs, generally defined as deep reefs between 30 and 150 m, are found worldwide and are largely structured by changes in the underwater light field. Additionally, it is increasingly understood that reef-to-reef variability in topography, combined with quantitative and qualitative changes in the underwater light field with increasing depth, significantly influence the observed changes in coral distribution and abundance. Here, we take a modeling approach to examine the effects of the inherent optical properties of the water column on the irradiance that corals are exposed to along a shallow to mesophotic depth gradient. In particular, the roles of reef topography including horizontal, sloping and vertical substrates are quantified, as well as the differences between mounding, plating and branching colony morphologies. Downwelling irradiance and reef topography interact such that for a water mass of similar optical properties, the irradiance reaching the benthos varies significantly with topography (i.e. substrate angle). Coral morphology, however, is also a factor; model results show that isolated hemispherical colonies consistently ‘see’ greater incident irradiances across depths, and throughout the day, compared to plating and branching morphologies. These modeled geometric-based differences in the incident irradiances on different coral morphologies are not, however, consistent with actual depth-dependent distributions of these coral morphotypes, where plating morphologies dominate as you go deeper. Other factors, such as the cost of calcification, arguably contribute to these differences, but irradiance-driven patterns are a strong proximate cause for the observed differences in mesophotic communities on sloping versus vertical reef substrates. 
    more » « less
  2. Abstract The morphological architecture of photosynthetic corals modulates the light capture and functioning of the coral-algal symbiosis on shallow-water corals. Since corals can thrive on mesophotic reefs under extreme light-limited conditions, we hypothesized that microskeletal coral features enhance light capture under low-light environments. Utilizing micro-computed tomography scanning, we conducted a novel comprehensive three-dimensional (3D) assessment of the small-scale skeleton morphology of the depth-generalist coral Stylophora pistillata collected from shallow (4–5 m) and mesophotic (45–50 m) depths. We detected a high phenotypic diversity between depths, resulting in two distinct morphotypes, with calyx diameter, theca height, and corallite marginal spacing contributing to most of the variation between depths. To determine whether such depth-specific morphotypes affect coral light capture and photosynthesis on the corallite scale, we developed 3D simulations of light propagation and photosynthesis. We found that microstructural features of corallites from mesophotic corals provide a greater ability to use solar energy under light-limited conditions; while corals associated with shallow morphotypes avoided excess light through self-shading skeletal architectures. The results from our study suggest that skeleton morphology plays a key role in coral photoadaptation to light-limited environments. 
    more » « less
  3. Abstract

    Increases in the frequency and intensity of acute and chronic disturbances are causing declines of coral reefs world‐wide. Although quantifying the responses of corals to acute disturbances is well documented, detecting subtle responses of coral populations to chronic disturbances is less common, but can also result in altered population and community structures.

    We investigated the population dynamics of two key reef‐building Merulinid coral species,Dipsastraea favusandPlatygyra lamellina, with similar life‐history traits, in the Gulf of Eilat and Aqaba, Red Sea from 2015 to 2018, to assess potential differences in their population trajectories.

    Demographic processes, which included rates of survival, growth, reproduction and recruitment were used to parametrize integral projection models and estimate population growth rates and the likely population trajectories of both coral species.

    The survival and reproduction rates of bothD. favusandP. lamellinawere positively related to coral colony size, and elasticity analyses showed that large colonies most influenced population dynamics. Although both species have similar life‐history traits and growth morphologies and are generally regarded as ‘stress‐tolerant’, the populations showed contrasting trajectories—D. favusappears to be increasing whereasP. lamellinaappears to be decreasing.

    As many corals have long‐life expectancies, the process of local and regional decline might be subtle and slow. Ecological assessments based on total living coral coverage, morphological groups or functional traits might overlook subtle, species‐specific trends. However, demographic approaches capable of detecting subtle species‐specific population changes can augment ecological studies and provide valuable early warning signs of decline before major coral loss becomes evident.

    more » « less
  4. null (Ed.)
    Energy sources of corals, ultimately sunlight and plankton availability, change dramatically from shallow to mesophotic (30–150 m) reefs. Depth-generalist corals, those that occupy both of these two distinct ecosystems, are adapted to cope with such extremely diverse conditions. In this study, we investigated the trophic strategy of the depth-generalist hermatypic coral Stylophora pistillata and the ability of mesophotic colonies to adapt to shallow reefs. We compared symbiont genera composition, photosynthetic traits and the holobiont trophic position and carbon sources, calculated from amino acids compound-specific stable isotope analysis (AA-CSIA), of shallow, mesophotic and translocated corals. This species harbors different Symbiodiniaceae genera at the two depths: Cladocopium goreaui (dominant in mesophotic colonies) and Symbiodinium microadriaticum (dominant in shallow colonies) with a limited change after transplantation. This allowed us to determine which traits stem from hosting different symbiont species compositions across the depth gradient. Calculation of holobiont trophic position based on amino acid δ 15 N revealed that heterotrophy represents the same portion of the total energy budget in both depths, in contrast to the dogma that predation is higher in corals growing in low light conditions. Photosynthesis is the major carbon source to corals growing at both depths, but the photosynthetic rate is higher in the shallow reef corals, implicating both higher energy consumption and higher predation rate in the shallow habitat. In the corals transplanted from deep to shallow reef, we observed extensive photo-acclimation by the Symbiodiniaceae cells, including substantial cellular morphological modifications, increased cellular chlorophyll a , lower antennae to photosystems ratios and carbon signature similar to the local shallow colonies. In contrast, non-photochemical quenching remains low and does not increase to cope with the high light regime of the shallow reef. Furthermore, host acclimation is much slower in these deep-to-shallow transplanted corals as evident from the lower trophic position and tissue density compared to the shallow-water corals, even after long-term transplantation (18 months). Our results suggest that while mesophotic reefs could serve as a potential refuge for shallow corals, the transition is complex, as even after a year and a half the acclimation is only partial. 
    more » « less
  5. Abstract

    Humans have long sought to restore species but little attention has been directed at how to best select a subset of foundation species for maintaining rich assemblages that support ecosystems, like coral reefs and rainforests, which are increasingly threatened by environmental change.

    We propose a two‐part hedging approach that selects optimized sets of species for restoration. The first part acknowledges that biodiversity supports ecosystem functions and services, and so it ensures precaution against loss by allocating an even spread of phenotypic traits. The second part maximizes species and ecosystem persistence by weighting species based on characteristics that are known to improve ecological persistence—for example abundance, species range and tolerance to environmental change.

    Using existing phenotypic‐trait and ecological data for reef building corals, we identified sets of ecologically persistent species by examining marginal returns in occupancy of phenotypic trait space. We compared optimal sets of species with those from the world's southern‐most coral reef, which naturally harbours low coral diversity, to show these occupy much of the trait space. Comparison with an existing coral restoration program indicated that current corals used for restoration only cover part of the desired trait space and programs may be improved by including species with different traits.

    Synthesis and applications. While there are many possible criteria for selecting species for restoration, the approach proposed here addresses the need to insure against unpredictable losses of ecosystem services by focusing on a wide range of phenotypic traits and ecological characteristics. Furthermore, the flexibility of the approach enables the functional goals of restoration to vary depending on environmental context, stakeholder values, and the spatial and temporal scales at which meaningful impacts can be achieved.

    more » « less