skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The influence of synoptic wind on land–sea breezes
Abstract Particularly challenging classes of heterogeneous surfaces are ones where strong secondary circulations are generated, potentially dominating the flow dynamics. In this study, we focus on land–sea breeze (LSB) circulations resulting from surface thermal contrasts, in the presence of increasing synoptic pressure forcing. The relative importance and orientation of the thermal and synoptic forcings are measured through two dimensionless parameters: a heterogeneity Richardson number (measuring the relative strength of geostrophic wind and convection induced by buoyancy), and the angleαbetween the shore and geostrophic wind. Large‐eddy simulations reveal the emergence of various regimes where the dynamics are asymmetric with respect toα. Along‐shore cases result in deep LSBs similar to the scenario with no synoptic background, irrespective of the geostrophic wind strength. Across‐shore simulations exhibit a circulation cell that decreases in height with increasing synoptic forcing. However, at the highest synoptic winds simulated, the circulation cell is advected away with sea‐to‐land winds, while a shallow circulation persists for land‐to‐sea cases. Scaling analysis that relates the internal parametersQshore(net shore volumetric flux) andqshore(net shore advected kinematic heat flux) to the external input parameters results in a succinct model of the shore fluxes that also helps explain the physical implications of the identified LSBs. Finally, the vertical profiles of the shore‐normal velocity and shore‐advected heat flux are used, with the aid ofk‐means clustering, to independently classify the LSBs into four regimes (canonical, sea‐driven, land‐driven, and advected), corroborating our visual categorization.  more » « less
Award ID(s):
2128345
PAR ID:
10449489
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Quarterly Journal of the Royal Meteorological Society
Volume:
149
Issue:
757
ISSN:
0035-9009
Format(s):
Medium: X Size: p. 3198-3219
Size(s):
p. 3198-3219
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A large part of the variability in the Atlantic meridional overturning circulation (AMOC) and thus uncertainty in its estimates on interannual time scales comes from atmospheric synoptic eddies and mesoscale processes. In this study, a suite of experiments with a 1/12° regional configuration of the MITgcm is performed where low-pass filtering is applied to surface wind forcing to investigate the impact of subsynoptic (<2 days) and synoptic (2–10 days) atmospheric processes on the ocean circulation. Changes in the wind magnitude and hence the wind energy input in the region have a significant effect on the strength of the overturning; once this is accounted for, the magnitude of the overturning in all sensitivity experiments is very similar to that of the control run. Synoptic and subsynoptic variability in atmospheric winds reduce the surface heat loss in the Labrador Sea, resulting in anomalous advection of warm and salty waters into the Irminger Sea and lower upper-ocean densities in the eastern subpolar North Atlantic. Other effects of high-frequency variability in surface winds on the AMOC are associated with changes in Ekman convergence in the midlatitudes. Synoptic and subsynoptic winds also impact the strength of the boundary currents and density structure in the subpolar North Atlantic. In the Labrador Sea, the overturning strength is more sensitive to the changes in density structure, whereas in the eastern subpolar North Atlantic, the role of density is comparable to that of the strength of the East Greenland Current. Significance StatementA key issue in understanding how well the Atlantic meridional overturning circulation is simulated in climate models is determining the impact of synoptic (2–10 days) and subsynoptic (shorter) wind variability on ocean circulation. We find that the greatest impact of wind changes on the strength of the overturning is through changes in energy input from winds to the ocean. Variations in winds have a more modest impact via changes in heat loss over the Labrador Sea, alongside changes in wind-driven surface currents. This study highlights the importance of accurately representing the density in the Labrador Sea, and both the strength and density structure of the East Greenland Current, for the correct representation of overturning circulation in climate models. 
    more » « less
  2. Abstract Interactions between large-scale waves and the Hadley Cell are examined using a linear two-layer model on anf-plane. A linear meridional moisture gradient determines the strength of the idealized Hadley Cell. The trade winds are in thermal wind balance with a weak temperature gradient (WTG). The mean meridional moisture gradient is unstable to synoptic-scale (horizontal scale of ∼1000 km) moisture modes that are advected westward by the trade winds, reminiscent of oceanic tropical depression-like waves. Meridional moisture advection causes the moisture modes to grow from “moisture-vortex instability” (MVI), resulting in a poleward eddy moisture flux that flattens the zonal-mean meridional moisture gradient, thereby weakening the Hadley Cell. The amplification of waves at the expense of the zonal-mean meridional moisture gradient implies a downscale latent energy cascade. The eddy moisture flux is opposed by a regeneration of the meridional moisture gradient by the Hadley Cell. These Hadley Cell-moisture mode interactions are reminiscent of quasi-geostrophic interactions, except that wave activity is due to column moisture variance rather than potential vorticity variance. The interactions can result in predator-prey cycles in moisture mode activity and Hadley Cell strength that are akin to ITCZ breakdown. It is proposed that moisture modes are the tropical analog to midlatitude baroclinic waves. MVI is analogous to baroclinic instability, stirring latent energy in the same way that dry baroclinic eddies stir sensible heat. These results indicate that moisture modes stabilize the Hadley Cell, and may be as important as the latter in global energy transport. 
    more » « less
  3. The southeast Indian Ocean (SEIO) exhibits decadal variability in sea surface temperature (SST) with amplitudes of ~0.2–0.3 K and covaries with the central Pacific ( r = −0.63 with Niño-4 index for 1975–2010). In this study, the generation mechanisms of decadal SST variability are explored using an ocean general circulation model (OGCM), and its impact on atmosphere is evaluated using an atmospheric general circulation model (AGCM). OGCM experiments reveal that Pacific forcing through the Indonesian Throughflow explains <20% of the total SST variability, and the contribution of local wind stress is also small. These wind-forced anomalies mainly occur near the Western Australian coast. The majority of SST variability is attributed to surface heat fluxes. The reduced upward turbulent heat flux ( Q T ; latent plus sensible heat flux), owing to decreased wind speed and anomalous warm, moist air advection, is essential for the growth of warm SST anomalies (SSTAs). The warming causes reduction of low cloud cover that increases surface shortwave radiation (SWR) and further promotes the warming. However, the resultant high SST, along with the increased wind speed in the offshore area, enhances the upward Q T and begins to cool the ocean. Warm SSTAs co-occur with cyclonic low-level wind anomalies in the SEIO and enhanced rainfall over Indonesia and northwest Australia. AGCM experiments suggest that although the tropical Pacific SST has strong effects on the SEIO region through atmospheric teleconnection, the cyclonic winds and increased rainfall are mainly caused by the SEIO warming through local air–sea interactions. 
    more » « less
  4. Abstract North Pacific atmospheric and oceanic circulations are key missing pieces in our understanding of the reorganization of the global climate system since the Last Glacial Maximum. Here, using a basin‐wide compilation of planktic foraminiferal δ18O, we show that the North Pacific subpolar gyre extended ~3° further south during the Last Glacial Maximum, consistent with sea surface temperature and productivity proxy data. Climate models indicate that the expansion of the subpolar gyre was associated with a substantial gyre strengthening, and that these gyre circulation changes were driven by a southward shift of the midlatitude westerlies and increased wind stress from the polar easterlies. Using single‐forcing model runs, we show that these atmospheric circulation changes are a nonlinear response to ice sheet topography/albedo and CO2. Our reconstruction indicates that the gyre boundary (and thus westerly winds) began to migrate northward at ~16.5 ka, driving changes in ocean heat transport, biogeochemistry, and North American hydroclimate. 
    more » « less
  5. Bou-Zeid, Elie (Ed.)
    Abstract Large-eddy simulation (LES) runs are performed to understand the influence of a one-dimensional (1D) surface heating heterogeneity on organized vertical motions within and above the atmospheric boundary layer (ABL). Two knowledge gaps are of interest: (i) how updrafts develop in the low free troposphere and (ii) what parameters control updraft location and strength within the ABL? LES runs are performed for a sheared, unstable ABL driven by geostrophic winds of the same magnitude but in various directions relative to a 1D surface-heat-flux heterogeneity. Quasi-steady-state LES results are phase-averaged over time and the horizontal dimension perpendicular to the surface-heat-flux gradient to quantify secondary circulations. Regarding the first knowledge gap, the results show that organized vertical motions in the low free troposphere can be modeled as two-dimensional (2D), stationary gravity waves, whose amplitudes depend on ABL updraft strength and instability development within the free troposphere. For the second gap, the results show that organized updrafts within the ABL may form above warm surfaces or downwind of warm-to-cool transitions. These different locations are well explained by both the relative contributions of horizontal and vertical velocities to the phase-averaged vorticity fluctuations tied to secondary circulations, and the relative importance of horizontal advection and turbulent transport in the phase-averaged internal energy fluctuation equation. The main balances associated with each updraft location are used to propose empirical models of updraft strength, and it is shown that the presence of sufficiently strong organized vertical motions can potentially change parameters used by atmospheric models that do not resolve ABL turbulence. Significance StatementThe purpose of this study is to better understand how heterogeneous surface heating affects updraft location and strength in the lowest kilometers of the atmosphere. We focus on horizontal heterogeneity scales comparable to the most frequently observed cloud size, a necessary step toward the parameterization of cloud shadow effects in weather and climate models. The results show that persistent updrafts may form above either warm or cool surfaces, with their location depending on the relative importance of terms in certain budget equations. Near-surface updrafts become stronger as the background mean wind becomes more perpendicular to the surface-heat-flux gradient, but their potential to influence clouds peaks when the background mean wind is neither parallel nor perpendicular to the surface-heat-flux gradient. 
    more » « less