Abstract Long‐range aerosol transport is an important physical mechanism for ecological, biological, and hydrological elements of the earth system. Regarding the latter, regional climate models have no way of assimilating future aerosol concentrations, so dust aerosol emissions must be parameterized using local landscape and meteorological conditions. The purpose of this study is to evaluate the accuracy of different dust emission settings within the Weather Research and Forecasting model coupled with chemistry (WRF‐Chem) to facilitate future dynamical downscaling work. This study performs nine WRF‐Chem hindcasts, each utilizing a different dust emission configuration, from 1 March to 31 May 2015, coinciding with a Saharan air layer (SAL) dust outbreak during the 2015 Caribbean drought. WRF‐Chem aerosol optical depth (AOD) and Gálvez‐Davison Index (GDI), a convective forecasting parameter, are validated against analogous MODIS, AERONET, and ERA5 products. In aggregate, the GOCART dust emission scheme with Air Force Weather Agency modifications (GOCART‐AFWA) achieved the best balance between AOD and GDI accuracy when employing the default tuning constant (1.00). As the schemes emitted dust more aggressively, WRF‐Chem produced warming at 500 hPa, reducing GDI over the central and eastern Atlantic near the modeled dust trajectory. Though AOD was generally too low over the southwest Atlantic, the eastern Caribbean occupies a transition zone between negative and positive AOD biases where this field was hindcast with relative accuracy. Meanwhile, areas with positive AOD biases were associated with negative GDI biases (and vice versa) indicating the covariability between SAL dust loadings and thermodynamic conditions in the tropical north Atlantic.
more »
« less
Synoptic Analysis and WRF‐Chem Model Simulation of Dust Events in the Southwestern United States
Abstract Dust transported from rangelands of the Southwestern United States (US) to mountain snowpack in the Upper Colorado River Basin during spring (March‐May) forces earlier and faster snowmelt, which creates problems for water resources and agriculture. To better understand the drivers of dust events, we investigated large‐scale meteorology responsible for organizing two Southwest US dust events from two different dominant geographic locations: (a) the Colorado Plateau and (b) the northern Chihuahuan Desert. High‐resolution Weather Research and Forecasting coupled with Chemistry model (WRF‐Chem) simulations with the Air Force Weather Agency dust emission scheme incorporating a MODIS albedo‐based drag‐partition was used to explore land surface‐atmosphere interactions driving two dust events. We identified commonalities in their meteorological setups. The meteorological analyses revealed that Polar and Sub‐tropical jet stream interaction was a common upper‐level meteorological feature before each of the two dust events. When the two jet streams merged, a strong northeast‐directed pressure gradient upstream and over the source areas resulted in strong near‐surface winds, which lifted available dust into the atmosphere. Concurrently, a strong mid‐tropospheric flow developed over the dust source areas, which transported dust to the San Juan Mountains and southern Colorado snowpack. The WRF‐Chem simulations reproduced both dust events, indicating that the simulations represented the dust sources that contributed to dust‐on‐snow events reasonably well. The representativeness of the simulated dust emission and transport in different geographic and meteorological conditions with our use of albedo‐based drag partition provides a basis for additional dust‐on‐snow simulations to assess the hydrologic impact in the Southwest US.
more »
« less
- Award ID(s):
- 2012091
- PAR ID:
- 10522343
- Publisher / Repository:
- Journal of Geophysical Research - Atmospheres
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 129
- Issue:
- 13
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Accurate precipitation estimates are critical to simulating seasonal snowpack evolution. We conduct and evaluate high‐resolution (4‐km) snowpack simulations over the western United States (WUS) mountains in Water Year 2013 using the Noah with multi‐parameterization (Noah‐MP) land surface model driven by precipitation forcing from convection‐permitting (4‐km) Weather Research and Forecasting (WRF) modeling and four widely used high‐resolution datasets that are derived from statistical interpolation based on in situ measurements. Substantial differences in the precipitation amount among these five datasets, particularly over the western and northern portions of WUS mountains, significantly affect simulated snow water equivalent (SWE) and snow depth (SD) but have relatively limited effects on snow cover fraction (SCF) and surface albedo. WRF generally captures observed precipitation patterns and results in an overall best‐performed SWE and SD in the western and northern portions of WUS mountains, where the statistically interpolated datasets lead to underpredicted precipitation, SWE, and SD. Over the interior WUS mountains, all the datasets consistently underestimate precipitation, causing significant negative biases in SWE and SD, among which the results driven by the WRF precipitation show an average performance. Further analysis reveals systematic positive biases in SCF and surface albedo across the WUS mountains, with similar bias patterns and magnitudes for simulations driven by different precipitation datasets, suggesting an urgent need to improve the Noah‐MP snowpack physics. This study highlights that convection‐permitting modeling with proper configurations can have added values in providing decent precipitation for high‐resolution snowpack simulations over the WUS mountains in a typical ENSO‐neutral year, particularly over observation‐scarce regions.more » « less
-
This study investigates the impacts of climate change on precipitation and snowpack in the interior western United States (IWUS) using two sets of convection-permitting Weather Research and Forecasting model simulations. One simulation represents the ~1990 climate, and another represents an ~2050 climate using a pseudo-global warming approach. Climate perturbations for the future climate are given by the CMIP5 ensemble-mean global climate models under the high-end emission scenario. The study analyzes the projected changes in spatial patterns of seasonal precipitation and snowpack, with particular emphasis on the effects of elevation on orographic precipitation and snowpack changes in four key mountain ranges: the Montana Rockies, Greater Yellowstone area, Wasatch Range, and Colorado Rockies. The IWUS simulations reveal an increase in annual precipitation across the majority of the IWUS in this warmer climate, driven by more frequent heavy to extreme precipitation events. Winter precipitation is projected to increase across the domain, while summer precipitation is expected to decrease, particularly in the High Plains. Snow-to-precipitation ratios and snow water equivalent are expected to decrease, especially at lower elevations, while snowpack melt is projected to occur earlier by up to 26 days in the ~2050 climate, highlighting significant impacts on regional water resources and hydrological management.more » « less
-
Abstract The Noah‐MP land surface model (LSM) relies on the Monin‐Obukhov (M‐O) Similarity Theory (MOST) to calculate land‐atmosphere exchanges of water, energy, and momentum fluxes. However, MOST flux‐profile relationships neglect canopy‐induced turbulence in the roughness sublayer (RSL) and parameterize within‐canopy turbulence in an ad hoc manner. We implement a new physics scheme (M‐O‐RSL) into Noah‐MP that explicitly parameterizes turbulence in RSL. We compare Noah‐MP simulations employing the M‐O‐RSL scheme (M‐O‐RSL simulations) and the default M‐O scheme (M‐O simulations) against observations obtained from 647 Snow Telemetry (SNOTEL) stations and two AmeriFlux stations in the western United States. M‐O‐RSL simulations of snow water equivalent (SWE) outperform M‐O simulations over 64% and 69% of SNOTEL sites in terms of root‐mean‐square‐error (RMSE) and correlation, respectively. The largest improvements in skill for M‐O‐RSL occur over closed shrubland sites, and the largest degradations in skill occur over deciduous broadleaf forest sites. Differences between M‐O and M‐O‐RSL simulated snowpack are primarily attributable to differences in aerodynamic conductance for heat underneath the canopy top, which modulates sensible heat flux. Differences between M‐O and M‐O‐RSL within‐canopy and below‐canopy sensible heat fluxes affect the amount of heat transported into snowpack and hence change snowmelt when temperatures are close to or above the melting point. The surface energy budget analysis over two AmeriFlux stations shows that differences between M‐O and M‐O‐RSL simulations can be smaller than other model biases (e.g., surface albedo). We intend for the M‐O‐RSL physics scheme to improve performance and uncertainty estimates in weather and hydrological applications that rely on Noah‐MP.more » « less
-
Abstract Snow is the most reflective natural surface on Earth. Since fresh snow on bare sea ice increases the surface albedo, the impact of summer snow accumulation can have a negative radiative forcing effect, which would inhibit sea ice surface melt and potentially slow sea‐ice loss. However, it is not well known how often, where, and when summer snowfall events occur on Arctic sea ice. In this study, we used in situ and model snow depth data paired with surface albedo and atmospheric conditions from satellite retrievals to characterize summer snow accumulation on Arctic sea ice from 2003 to 2017. We found that, across the Arctic, ∼2 snow accumulation events occurred on initially snow‐free conditions each year. The average snow depth and albedo increases were ∼2 cm and 0.08, respectively. 16.5% of the snow accumulation events were optically thick (>3 cm deep) and lasted 2.9 days longer than the average snow accumulation event (3.4 days). Based on a simple, multiple scattering radiative transfer model, we estimated a −0.086 ± 0.020 W m−2change in the annual average top‐of‐the‐atmosphere radiative forcing for summer snowfall events in 2003–2017. The following work provides new information on the frequency, distribution, and duration of observed snow accumulation events over Arctic sea ice in summer. Such results may be particularly useful in understanding the impacts of ephemeral summer weather on surface albedo and their propagating effects on the radiative forcing over Arctic sea ice, as well as assessing climate model simulations of summer atmosphere‐ice processes.more » « less
An official website of the United States government

