skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Regulation‐triggered adaptive control of a hyperbolic PDE‐ODE model with boundary interconnections
Summary We present a certainty equivalence‐based adaptive boundary control scheme with a regulation‐triggered batch least‐squares identifier, for a heterodirectional transport partial differential equation‐ordinary differential equation (PDE‐ODE) system where the transport speeds of both transport PDEs are unknown. We use a nominal controller which is fed piecewise‐constant parameter estimates from an event‐triggered parameter update law that applies a least‐squares estimator to data “batches” collected over time intervals between the triggers. A parameter update is triggered by an observed growth in the norm of the PDE state. The proposed triggering‐based adaptive control guarantees: (1) the absence of a Zeno phenomenon; (2) parameter estimates are convergent to the true values in finite time (from most initial conditions); (3) exponential regulation of the plant states to zero. The effectiveness of the proposed design is verified by a numerical example.  more » « less
Award ID(s):
1935329
PAR ID:
10449678
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Adaptive Control and Signal Processing
Volume:
35
Issue:
8
ISSN:
0890-6327
Page Range / eLocation ID:
p. 1513-1543
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper proposes a novel fault isolation (FI) scheme for distributed parameter systems modeled by a class of parabolic partial differential equations (PDEs) with nonlinear uncertain dynamics. A key feature of the proposed FI scheme is its capability of dealing with the effects of system uncertainties for accurate FI. Specifically, an approximate ordinary differential equation (ODE) system is first derived to capture the dominant dynamics of the original PDE system. An adaptive dynamics identification approach using radial basis function neural network is then proposed based on this ODE system, to achieve locally-accurate identification of the uncertain system dynamics under faulty modes. A bank of FI estimators with associated adaptive thresholds are finally designed for real-time FI decision making. Rigorous analysis on the fault isolatability is provided. Simulation study on a representative transport-reaction process is conducted to demonstrate the effectiveness of the proposed approach. 
    more » « less
  2. This paper proposes a novel fault detection and isolation (FDI) scheme for distributed parameter systems modeled by a class of parabolic partial differential equations (PDEs) with nonlinear uncertain dynamics. A key feature of the proposed FDI scheme is its capability of dealing with the effects of system uncertainties for accurate FDI. Specifically, an approximate ordinary differential equation (ODE) system is first derived to capture the dominant dynamics of the original PDE system. An adaptive dynamics identification approach using radial basis function neural network is then proposed based on this ODE system, so as to achieve locally-accurate identification of the uncertain system dynamics under normal and faulty modes. A bank of FDI estimators with associated adaptive thresholds are finally designed for real-time FDI decision making. Rigorous analysis on the FDI performance in terms of fault detectability and isolatability is provided. Simulation study on a representative transport-reaction process is conducted to demonstrate the effectiveness and advantage of the proposed approach. 
    more » « less
  3. Abstract The intracellular transport process plays an important role in delivering essential materials throughout branched geometries of neurons for their survival and function. Many neurodegenerative diseases have been associated with the disruption of transport. Therefore, it is essential to study how neurons control the transport process to localize materials to necessary locations. Here, we develop a novel optimization model to simulate the traffic regulation mechanism of material transport in three-dimensional complex geometries of neurons. The transport is controlled to avoid traffic jams of materials by minimizing a predefined objective function. The optimization subjects to a set of partial differential equation (PDE) constraints that describe the material transport process based on a macroscopic molecular-motor-assisted transport model of intracellular particles. The proposed PDE-constrained optimization model is solved in complex tree structures by using the isogeometric analysis. Different simulation parameters are used to introduce traffic jams and study how neurons handle the transport issue. Specifically, we successfully model and explain the traffic jam caused by the reduced number of microtubules (MTs) and MT swirls. In summary, our model effectively simulates the material transport process in healthy neurons and also explains the formation of a traffic jam in abnormal neurons. Our results demonstrate that both geometry and MT structure play important roles in achieving an optimal transport process in neurons. 
    more » « less
  4. Alessandro Astolfi (Ed.)
    This article studies the adaptive optimal stationary control of continuous-time linear stochastic systems with both additive and multiplicative noises, using reinforcement learning techniques. Based on policy iteration, a novel off-policy reinforcement learning algorithm, named optimistic least-squares-based policy iteration, is proposed, which is able to find iteratively near-optimal policies of the adaptive optimal stationary control problem directly from input/state data without explicitly identifying any system matrices, starting from an initial admissible control policy. The solutions given by the proposed optimistic least-squares-based policy iteration are proved to converge to a small neighborhood of the optimal solution with probability one, under mild conditions. The application of the proposed algorithm to a triple inverted pendulum example validates its feasibility and effectiveness. 
    more » « less
  5. Abstract The intracellular transport process plays an important role in delivering essential materials throughout branched geometries of neurons for their survival and function. Many neurodegenerative diseases have been associated with the disruption of transport. Therefore, it is essential to study how neurons control the transport process to localize materials to necessary locations. Here, we develop a novel optimization model to simulate the traffic regulation mechanism of material transport in complex geometries of neurons. The transport is controlled to avoid traffic jam of materials by minimizing a pre-defined objective function. The optimization subjects to a set of partial differential equation (PDE) constraints that describe the material transport process based on a macroscopic molecular-motor-assisted transport model of intracellular particles. The proposed PDE-constrained optimization model is solved in complex tree structures by using isogeometric analysis (IGA). Different simulation parameters are used to introduce traffic jams and study how neurons handle the transport issue. Specifically, we successfully model and explain the traffic jam caused by reduced number of microtubules (MTs) and MT swirls. In summary, our model effectively simulates the material transport process in healthy neurons and also explains the formation of a traffic jam in abnormal neurons. Our results demonstrate that both geometry and MT structure play important roles in achieving an optimal transport process in neuron. 
    more » « less