Summary Chloroplast Unusual Positioning 1 (CHUP1) plays an important role in the chloroplast avoidance and accumulation responses in mesophyll cells. In epidermal cells, prior research showed silencingCHUP1‐induced chloroplast stromules and amplified effector‐triggered immunity (ETI); however, the underlying mechanisms remain largely unknown.CHUP1 has a dual function in anchoring chloroplasts and recruiting chloroplast‐associated actin (cp‐actin) filaments for blue light‐induced movement. To determine which function is critical for ETI, we developed an approach to quantify chloroplast anchoring and movement in epidermal cells. Our data show that silencingNbCHUP1inNicotiana benthamianaplants increased epidermal chloroplast de‐anchoring and basal movement but did not fully disrupt blue light‐induced chloroplast movement.SilencingNbCHUP1auto‐activated epidermal chloroplast defense (ECD) responses including stromule formation, perinuclear chloroplast clustering, the epidermal chloroplast response (ECR), and the chloroplast reactive oxygen species (ROS), hydrogen peroxide (H2O2). These findings show chloroplast anchoring restricts a multifaceted ECD response.Our results also show that the accumulated chloroplastic H2O2inNbCHUP1‐silenced plants was not required for the increased basal epidermal chloroplast movement but was essential for increased stromules and enhanced ETI. This finding indicates that chloroplast de‐anchoring and H2O2play separate but essential roles during ETI.
more »
« less
Chloroplast quality control pathways are dependent on plastid DNA synthesis and nucleotides provided by cytidine triphosphate synthase two
Summary Reactive oxygen species (ROS) produced in chloroplasts cause oxidative damage, but also signal to initiate chloroplast quality control pathways, cell death, and gene expression. TheArabidopsis thaliana plastid ferrochelatasetwo(fc2) mutant produces the ROS singlet oxygen in chloroplasts that activates such signaling pathways, but the mechanisms are largely unknown.Here we characterize onefc2suppressor mutation and map it toCYTIDINE TRIPHOSPHATE SYNTHASE TWO(CTPS2), which encodes one of five enzymes in Arabidopsis necessary forde novocytoplasmic CTP (and dCTP) synthesis.Thectps2mutation reduces chloroplast transcripts and DNA content without similarly affecting mitochondria. Chloroplast nucleic acid content and singlet oxygen signaling are restored by exogenous feeding of the dCTP precursor deoxycytidine, suggestingctps2blocks signaling by limiting nucleotides for chloroplast genome maintenance. An investigation of CTPS orthologs in Brassicaceae showed CTPS2 is a member of an ancient lineage distinct from CTPS3. Complementation studies confirmed this analysis; CTPS3 was unable to compensate for CTPS2 function in providing nucleotides for chloroplast DNA and signaling.Our studies link cytoplasmic nucleotide metabolism with chloroplast quality control pathways. Such a connection is achieved by a conserved clade of CTPS enzymes that provide nucleotides for chloroplast function, thereby allowing stress signaling to occur.
more »
« less
- PAR ID:
- 10449683
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 231
- Issue:
- 4
- ISSN:
- 0028-646X
- Page Range / eLocation ID:
- p. 1431-1448
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary DNA methylation plays crucial roles in cellular development and stress responses through gene regulation and genome stability control. Precise regulation of DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), thede novoArabidopsis DNA methyltransferase, is crucial to maintain DNA methylation homeostasis to ensure genome integrity. Compared with the extensive studies on DRM2 targeting mechanisms, little information is known regarding the quality control of DRM2 itself.Here, we conducted yeast two‐hybrid screen assay and identified an E3 ligase, COP9 INTERACTING F‐BOX KELCH 1 (CFK1), as a novel DRM2‐interacting partner and targets DRM2 for degradation via the ubiquitin‐26S proteasome pathway inArabidopsis thaliana. We also performed whole genome bisulfite sequencing (BS‐seq) to determine the biological significance of CFK1‐mediated DRM2 degradation.Loss‐of‐functionCFK1leads to increased DRM2 protein abundance and overexpression of CFK1 showed reduced DRM2 protein levels. Consistently, CFK1 overexpression induces genome‐wide CHH hypomethylation and transcriptional de‐repression at specific DRM2 target loci.This study uncovered a distinct mechanism regulatingde novoDNA methyltransferase by CFK1 to control DNA methylation level.more » « less
-
Summary A network of peptidases governs proteostasis in plant chloroplasts and mitochondria. This study reveals strong genetic and functional interactions in Arabidopsis between the chloroplast stromal CLP chaperone‐protease system and the PREP1,2 peptidases, which are dually localized to chloroplast stroma and the mitochondrial matrix.Higher order mutants defective in CLP or PREP proteins were generated and analyzed by quantitative proteomics and N‐terminal proteomics (terminal amine isotopic labeling of substrates (TAILS)).Strong synergistic interactions were observed between the CLP protease system (clpr1‐2,clpr2‐1,clpc1‐1,clpt1,clpt2)and both PREP homologs (prep1,prep2) resulting in embryo lethality or growth and developmental phenotypes. Synergistic interactions were observed even when only one of the PREP proteins was lacking, suggesting that PREP1 and PREP2 have divergent substrates. Proteome phenotypes were driven by the loss of CLP protease capacity, with little impact from the PREP peptidases. Chloroplast N‐terminal proteomesshowed that many nuclear encoded chloroplast proteins have alternatively processed N‐termini inprep1prep2,clpt1clpt2andprep1prep2clpt1clpt2.Loss of chloroplast protease capacity interferes with stromal processing peptidase (SPP) activity due to folding stress and low levels of accumulated cleaved cTP fragments. PREP1,2 proteolysis of cleaved cTPs is complemented by unknown proteases. A model for CLP and PREP activity within a hierarchical chloroplast proteolysis network is proposed.more » « less
-
Summary Integration ofAgrobacterium tumefacienstransferred DNA (T‐DNA) into the plant genome is the last step required for stable plant genetic transformation. The mechanism of T‐DNA integration remains controversial, although scientists have proposed the participation of various nonhomologous end‐joining (NHEJ) pathways. Recent evidence suggests that inArabidopsis, DNA polymerase θ (PolQ) may be a crucial enzyme involved in T‐DNA integration.We conducted quantitative transformation assays of wild‐type andpolQmutantArabidopsisand rice, analyzed T‐DNA/plant DNA junction sequences, and (forArabidopsis) measured the amount of integrated T‐DNA in mutant and wild‐type tissue.Unexpectedly, we were able to generate stable transformants of all tested lines, although the transformation frequency ofpolQmutants was c.20% that of wild‐type plants. T‐DNA/plant DNA junctions from these transformed rice andArabidopsis polQmutants closely resembled those from wild‐type plants, indicating that loss of PolQ activity does not alter the characteristics of T‐DNA integration events.polQmutant plants show growth and developmental defects, perhaps explaining previous unsuccessful attempts at their stable transformation.We suggest that either multiple redundant pathways function in T‐DNA integration, and/or that integration requires some yet unknown pathway.more » « less
-
Summary Photoprotection against excess light via nonphotochemical quenching (NPQ) is indispensable for plant survival. However, slow NPQ relaxation under low light conditions can decrease yield of field‐grown crops up to 40%.Using semi‐high‐throughput assay, we quantified the kinetics of NPQ and photosystem II operating efficiency (ΦPSII) in a replicated field trial of more than 700 maize (Zea mays) genotypes across 2 yr. Parametrized kinetics data were used to conduct genome‐wide association studies.For six candidate genes involved in NPQ and ΦPSII kinetics in maize the loss of function alleles of orthologous genes in Arabidopsis (Arabidopsis thaliana) were characterized: two thioredoxin genes, and genes encoding a transporter in the chloroplast envelope, an initiator of chloroplast movement, a putative regulator of cell elongation and stomatal patterning, and a protein involved in plant energy homeostasis.Since maize and Arabidopsis are distantly related, we propose that genes involved in photoprotection and PSII function are conserved across vascular plants. The genes and naturally occurring functional alleles identified here considerably expand the toolbox to achieving a sustainable increase in crop productivity.more » « less
An official website of the United States government
