Synthesizing doubly threaded [3]rotaxanes requires the use of larger rings than more traditional singly threaded [2]rotaxanes. A key challenge in accessing stable doubly threaded [3]rotaxanes with large rings is finding the right combination of ring to stopper size. In this study, a series of doubly threaded [3]rotaxanes derived from five different sized macrocycles in the size range of 40–48 atoms and two different stopper groups, which contain 1 or 2 tris(p-t-butylbiphenyl)methyl moieties, were prepared and their kinetic stability examined. These interlocked compounds were synthesized using a metal-templated approach and fully characterized utilizing a combination of mass spectrometry, NMR spectroscopy, and size-exclusion chromatography techniques. The effect of ring size on the stability of the doubly threaded [3]rotaxane was investigated via kinetic stability tests monitored using 1H-NMR spectroscopy. By tightening the macrocycle systematically every 2 atoms from 48 to 40 atoms, a wide range of doubly threaded interlocked molecules could be accessed in which the rate of room temperature slippage of the macrocycle from the dumbbells could be tuned. Using the larger stopper group with a 48-atom ring results in no observable rotaxane, 46–44 atom macrocycles result in metastable rotaxane species with a slippage half-life of ∼5 weeks and ∼9 weeks, respectively, while macrocycles of 42 atoms or smaller yield a stable rotaxane. The smaller sized stopper is not able to fully stabilize any of the [3]rotaxane structures but metastable [3]rotaxanes are obtained with slippage half-lives of 25 ± 2 hours and 13 ± 1 days using macrocycles with 42 or 40 atoms, respectively. These results highlight the dramatic effect that relatively small ring size changes can have on the structure of doubly threaded [3]rotaxanes and lay the synthetic groundwork for a range of higher order doubly threaded interlocked architectures.
more »
« less
Exploring the Impact of Ring Mobility on the Macroscopic Properties of Doubly Threaded Slide‐Ring Gel Networks
Abstract The integration of mechanically interlocked molecules (MIMs) into polymeric materials has led to the development of mechanically interlocked polymers (MIPs). One class of MIPs that have gained attention in recent years are slide‐ring gels (SRGs), which are generally accessed by crosslinking rings on a main‐chain polyrotaxane. The mobility of the interlocked crosslinking moieties along the polymer backbone imparts enhanced properties onto these networks. An alternative synthetic approach to SRGs is to use a doubly threaded ring as the crosslinking moiety, yielding doubly threaded slide‐ring gel networks (dt‐SRGs). In this study, a photo‐curable ligand‐containing thread was used to assemble a series of metal‐templated pseudo[3]rotaxane crosslinkers that allow access to polymer networks that contain doubly threaded interlocked rings. The physicochemical and mechanical properties of these dt‐SRGs with varying size of the ring crosslinking moieties were investigated and compared to an entangled gel (EG) prepared by polymerizing the metal complex of the photo‐curable ligand‐containing thread, and a corresponding covalent gel (CG). Relative to the EG and CG, the dt‐SRGs exhibit enhanced swelling behavior, viscoelastic properties, and stress relaxation characteristics. In addition, the macroscopic properties of dt‐SRGs could be altered by “locking” ring mobility in the structure through remetalation, highlighting the impact of the mobility of the crosslinks.
more »
« less
- PAR ID:
- 10590268
- Publisher / Repository:
- German Chemical Society
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Mechanically interlocked polymers (MIPs), polymer architectures that incorporate the mechanical bond, have seen a dramatic growth in interest over the last decade or so. Of particular interest in these architectures are the high mobility and conformational freedom of the interlocked components, which can give rise to unique property profiles. Over the years the research advances, from the chemistry, physics, material science and engineering fields, has started to build an understanding of how incorporating mechanical bonds into a polymer structure impacts its properties. This review focuses on summarizing the state-of-the-art understanding of the structure-property relationships in these materials and an outlook toward their applications, specifically focusing on four main classes of MIPs, polyrotaxanes, slide-ring gels, daisy-chain polymers and polycatenanes.more » « less
-
Abstract A series of glucose‐based degradable superabsorbent hydrogels with potential to tackle issues associated with sustainability, flooding, and drought has been designed and fabricated. These hydrophilic networks were constructed through integrating glucose as a primary building block –into cyclic oligomers and block polymers, which were combined into mechanically‐interlocked slide‐ring crosslinked materials. Crosslinking of slide ring α‐cyclodextrin/poly(ethylene glycol)‐type polyrotaxanes with acid‐functionalized ABA triblock copolymers comprised of mercaptopropionic acid‐functionalized poly(glucose carbonate (ethyl propargyl carbonate))‐b‐poly(ethylene glycol)‐b‐mercaptopropionic acid‐functionalized poly(glucose carbonate (ethyl propargyl carbonate)), afforded degradable superabsorbent hydrogels through establishment of chemically‐labile ester linkages, in addition to glycosidic and carbonate groups of the polymer precursors. With an emphasis on development of fundamental synthetic design strategies to achieve high‐performance superabsorbent hydrogels that could behave as robust materials, which are derived from natural components and exhibit hydrolytic degradability, effort went into optimization of the composition, structure, and topology leading to water uptake capacities >30× by mass. Investigations of composition‐structure‐topology‐morphology effects on properties as a function of variations of PEG main chain length, degree of α‐cyclodextrin coverage, and concentration of pre‐gel solution, indicated that the slide‐ring polymer and triblock copolymer networks feature high water uptake, tunable mechanical properties, and sustainability with construction from renewable natural products and in‐built degradability.more » « less
-
In this study, we simulate mechanically interlocked semiflexible ring polymers inspired by the minicircles of kinetoplast DNA (kDNA) networks. Using coarse-grained molecular dynamics simulations, we investigate the impact of molecular topological linkage and nanoconfinement on the conformational properties of two- and three-ring polymer systems in varying solvent qualities. Under good-quality solvents, for two-ring systems, a higher number of crossing points lead to a more internally constrained structure, reducing their mean radius of gyration. In contrast, three-ring systems, which all had the same crossing number, exhibited more similar sizes. In unfavorable solvents, structures collapse, forming compact configurations with increased contacts. The morphological diversity of structures primarily arises from topological linkage rather than the number of rings. In three-ring systems with different topological conformations, structural uniformity varies based on link types. Extreme confinement induces isotropic and extended conformations for catenated polymers, aligning with experimental results for kDNA networks and influencing the crossing number and overall shape. Finally, the flat-to-collapse transition in extreme confinement occurs earlier (at relatively better solvent conditions) compared to non-confined systems. This study offers valuable insights into the conformational behavior of mechanically interlocked ring polymers, highlighting challenges in extrapolating single-molecule analyses to larger networks such as kDNA.more » « less
-
Abstract Recent investigations have pointed to physical entanglements that greatly outnumber chemical crosslinks as key sources of energy dissipation and low friction in hydrogel networks. Slide-ring gels are an emerging class of hydrogels described by their mobile crosslinks, which are formed by rings topologically constrained to slide along linear polymer chains within the network. These materials have enjoyed decades of study by polymer chemists but have been underexplored by the tribology community. In this work, we synthesized a pseudo-rotaxane crosslinker from poly(ethylene glycol) diacrylate (PEG-diacrylate) andα-cyclodextrin-acrylate followed by hydrogel networks by connecting the sliding crosslinks with polyacrylamide chains. The mechanical and tribological properties of slide-ring hydrogels were investigated using a custom-built microtribometer. Slide-ring hydrogels exhibit unique behavior compared to conventional covalently crosslinked polyacrylamide hydrogels and offer a vast design space for future investigations. Graphical Abstractmore » « less
An official website of the United States government

