skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Disturbance‐accelerated succession increases the production of a temperate forest
Abstract

Many secondary deciduous forests of eastern North America are approaching a transition in which mature early‐successional trees are declining, resulting in an uncertain future for this century‐long carbon (C) sink. We initiated the Forest Accelerated Succession Experiment (FASET) at the University of Michigan Biological Station to examine the patterns and mechanisms underlying forest C cycling following the stem girdling‐induced mortality of >6,700 early‐successionalPopulusspp. (aspen) andBetula papyrifera(paper birch). Meteorological flux tower‐based C cycling observations from the 33‐ha treatment forest have been paired with those from a nearby unmanipulated forest since 2008. Following over a decade of observations, we revisit our core hypothesis: that net ecosystem production (NEP) would increase following the transition to mid‐late‐successional species dominance due to increased canopy structural complexity. Supporting our hypothesis, NEP was stable, briefly declined, and then increased relative to the control in the decade following disturbance; however, increasing NEP was not associated with rising structural complexity but rather with a rapid 1‐yr recovery of total leaf area index as mid‐late‐successionalAcer,Quercus, andPinusassumed canopy dominance. The transition to mid‐late‐successional species dominance improved carbon‐use efficiency (CUE = NEP/gross primary production) as ecosystem respiration declined. Similar soil respiration rates in control and treatment forests, along with species differences in leaf physiology and the rising relative growth rates of mid‐late‐successional species in the treatment forest, suggest changes in aboveground plant respiration and growth were primarily responsible for increases in NEP. We conclude that deciduous forests transitioning from early to middle succession are capable of sustained or increased NEP, even when experiencing extensive tree mortality. This adds to mounting evidence that aging deciduous forests in the region will function as C sinks for decades to come.

 
more » « less
Award ID(s):
1655095
PAR ID:
10449742
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecological Applications
Volume:
31
Issue:
7
ISSN:
1051-0761
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Secondary tropical forests play an increasingly important role in carbon budgets and biodiversity conservation. Understanding successional trajectories is therefore imperative for guiding forest restoration and climate change mitigation efforts. Forest succession is driven by the demographic strategies—combinations of growth, mortality and recruitment rates—of the tree species in the community. However, our understanding of demographic diversity in tropical tree species stems almost exclusively from old‐growth forests. Here, we assembled demographic information from repeated forest inventories along chronosequences in two wet (Costa Rica, Panama) and two dry (Mexico) Neotropical forests to assess whether the ranges of demographic strategies present in a community shift across succession. We calculated demographic rates for >500 tree species while controlling for canopy status to compare demographic diversity (i.e., the ranges of demographic strategies) in early successional (0–30 years), late successional (30–120 years) and old‐growth forests using two‐dimensional hypervolumes of pairs of demographic rates. Ranges of demographic strategies largely overlapped across successional stages, and early successional stages already covered the full spectrum of demographic strategies found in old‐growth forests. An exception was a group of species characterized by exceptionally high mortality rates that was confined to early successional stages in the two wet forests. The range of demographic strategies did not expand with succession. Our results suggest that studies of long‐term forest monitoring plots in old‐growth forests, from which most of our current understanding of demographic strategies of tropical tree species is derived, are surprisingly representative of demographic diversity in general, but do not replace the need for further studies in secondary forests.

     
    more » « less
  2. Abstract

    Microclimatic conditions change dramatically as forests age and impose strong filters on community assembly during succession. Light availability is the most limiting environmental factor in tropical wet forest succession; by contrast, water availability is predicted to strongly influence tropical dry forest (TDF) successional dynamics. While mechanisms underlying TDF successional trajectories are not well understood, observational studies have demonstrated that TDF communities transition from being dominated by species with conservative traits to species with acquisitive traits, the opposite of tropical wet forest. Determining how functional traits predict TDF tree species’ responses to changing environmental conditions could elucidate mechanisms underlying tree performance during TDF succession. We implemented a 6‐ha restoration experiment on a degraded Vertisol in Costa Rica to determine (1) how TDF tree species with different resource‐use strategies performed along a successional gradient and (2) how ecophysiological functional traits correlated with tree performance in simulated successional stages. We used two management treatments to simulate distinct successional stages including: clearing all remnant vegetation (early‐succession), or interplanting seedlings with no clearing (mid‐succession). We crossed these two management treatments (cleared/interplanted) with two species mixes with different resource‐use strategies (acquisitive/conservative) to examine their interaction. Overall seedling survival after 2 yr was low, 15.1–26.4% in the four resource‐use‐strategy × management‐treatment combinations, and did not differ between the management treatments or resource‐use‐strategy groups. However, seedling growth rates were dramatically higher for all species in the cleared treatment (year 1, 69.1% higher; year 2, 143.3% higher) and defined resource‐use strategies had some capacity to explain seedling performance. Overall, ecophysiological traits were better predictors of species’ growth and survival than resource‐use strategies defined by leaf and stem traits such as specific leaf area. Moreover, ecophysiological traits related to water use had a stronger influence on seedling performance in the cleared, early‐successional treatment, indicating that the influence of microclimatic conditions on tree survival and growth shifts predictably during TDF succession. Our findings suggest that ecophysiological traits should be explicitly considered to understand shifts in TDF functional composition during succession and that using these traits to design species mixes could greatly improve TDF restoration outcomes.

     
    more » « less
  3. Temperate deciduous forests are an important contributor to the global carbon (C) sink. However, changes in environmental conditions and natural disturbances such as insect infestations can impact carbon sequestration capabilities of these forests. While, insect infestations are expected to increase in warmer future climates, there is a lack of knowledge on the quantitative impact of these natural disturbances on the carbon balance of temperate deciduous forests. In 2021, a record-breaking defoliation, caused by the spongy moth (Lymantria dispar dispar (LDD), formerly knows as the gypsy moth) occurred in eastern North America. In this study, we assess the impact of this spongy moth defoliation on carbon uptake in a mature oak-dominated temperate forest in the Great Lakes region in Canada, using eddy covariance flux data from 2012 to 2022. Study results showed that the forest was a large C sink with mean annual net ecosystem productivity (NEP) of 207 ± 77 g C m–2 yr−1 from 2012 to 2022, excluding 2021, which experienced the infestation. Over this period mean annual gross ecosystem productivity (GEP) was 1,398 ± 137 g C m–2 yr−1, while ecosystem respiration (RE) was 1,209 ± 139 g C m–2 yr−1. However, in 2021 due to defoliation in the early growing season, annual GEP of the forest declined to 959 g C m–2 yr−1, while annual RE increased to 1,345 g C m–2 yr−1 causing the forest to become a large source of C with annual NEP of -351 g C m–2 yr−1. The forest showed a rapid recovery from this major disturbance event, with annual GEP, RE, and NEP values of 1,671, 1,287, and 298 g C m–2 yr−1, respectively in 2022 indicating that the forest was once again a large C sink. This study demonstrates that major transient natural disturbances under changing climate can have a significant impact on forest C dynamics. The extent to which North American temperate forests will remain a major C sink will depend on the severity and intensity of these disturbance events and the rate of recovery of forests following disturbances. 
    more » « less
  4. Abstract

    Light competition is thought to drive successional shifts in species dominance in closed vegetations, but few studies have assessed this for species-rich and vertically structured tropical forests. We analyzed how light competition drives species replacement during succession, and how cross-species variation in light competition strategies is determined by underlying species traits. To do so, we used chronosequence approach in which we compared 14 Mexican tropical secondary rainforest stands that differ in age (8–32 year-old). For each tree, height and stem diameter were monitored for 2 years to calculate relative biomass growth rate (RGR, the aboveground biomass gain per unit aboveground tree biomass per year). For each stand, 3D light profiles were measured to estimate individuals’ light interception to calculate light interception efficiency (LIE, intercepted light per unit biomass per year) and light use efficiency (LUE, biomass growth per intercepted light). Throughout succession, species with higher RGR attained higher changes in species dominance and thus increased their dominance over time. Both light competition strategies (LIE and LUE) increased RGR. In early succession, a high LIE and its associated traits (large crown leaf mass and low wood density) are more important for RGR. During succession, forest structure builds up, leading to lower understory light levels. In later succession, a high LUE and its associated traits (high wood density and leaf mass per area) become more important for RGR. Therefore, successional changes in relative importance of light competition strategies drive shifts in species dominance during tropical rainforest succession.

     
    more » « less
  5. Abstract

    Both dispersal‐ and niche‐based factors can impose major barriers on tree establishment. Our understanding of how these factors interact to determine recruitment rates is based primarily on findings from mature tropical forests, despite the fact that a majority of tropical forests are now secondary. Consequently, factors influencing seed limitation and the seed‐to‐seedling transition (STS) in disturbed landscapes, and how those factors shift during succession, are not well understood. We used a 3.5‐yr record of seed rain and seedling establishment to investigate factors influencing tree recruitment after a decade of recovery in a tropical wet forest restoration experiment in southern Costa Rica. We asked (1) how do a range of restoration treatments (natural regeneration, applied nucleation, plantation), canopy cover, and life‐history traits influence the STS and (2) how do seed and establishment limitation (lack of seed arrival or lack of seedling recruitment, respectively) influence vegetation recovery within restoration treatments as compared to remnant forest? We did not observe any differences in STS rates across restoration treatments. However, STS rates were lowest in adjacent later successional remnant forests, where seed source availability did not highly limit seed arrival, underscoring that niche‐based processes may increasingly limit recruitment as succession unfolds. Additionally, larger‐seeded species had consistently higher STS rates across treatments and remnant forests, though establishment limitation for these species was lowest in the remnant forests. Species were generally seed limited and almost all were establishment limited; these patterns were consistent across treatments. However, our results suggest that differences in recruitment rates could be driven by differential dispersal to treatments with higher canopy cover. We found evidence that barriers to recruitment shift during succession, with the influence of seed limitation, mediated by species‐level seed deposition rates, giving way to niche‐based processes. However, establishment limitation was lowest in the remnant forests for large‐seeded and late successional species, highlighting the importance of habitat specialization and life‐history traits in dictating recruitment dynamics. Overall, results demonstrate that active restoration approaches such as tree planting catalyze forest recovery, not only by decreasing components of seed limitation, but also by developing canopy cover that increases establishment rates of larger‐seeded species.

     
    more » « less