skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Disturbance‐accelerated succession increases the production of a temperate forest
Abstract Many secondary deciduous forests of eastern North America are approaching a transition in which mature early‐successional trees are declining, resulting in an uncertain future for this century‐long carbon (C) sink. We initiated the Forest Accelerated Succession Experiment (FASET) at the University of Michigan Biological Station to examine the patterns and mechanisms underlying forest C cycling following the stem girdling‐induced mortality of >6,700 early‐successionalPopulusspp. (aspen) andBetula papyrifera(paper birch). Meteorological flux tower‐based C cycling observations from the 33‐ha treatment forest have been paired with those from a nearby unmanipulated forest since 2008. Following over a decade of observations, we revisit our core hypothesis: that net ecosystem production (NEP) would increase following the transition to mid‐late‐successional species dominance due to increased canopy structural complexity. Supporting our hypothesis, NEP was stable, briefly declined, and then increased relative to the control in the decade following disturbance; however, increasing NEP was not associated with rising structural complexity but rather with a rapid 1‐yr recovery of total leaf area index as mid‐late‐successionalAcer,Quercus, andPinusassumed canopy dominance. The transition to mid‐late‐successional species dominance improved carbon‐use efficiency (CUE = NEP/gross primary production) as ecosystem respiration declined. Similar soil respiration rates in control and treatment forests, along with species differences in leaf physiology and the rising relative growth rates of mid‐late‐successional species in the treatment forest, suggest changes in aboveground plant respiration and growth were primarily responsible for increases in NEP. We conclude that deciduous forests transitioning from early to middle succession are capable of sustained or increased NEP, even when experiencing extensive tree mortality. This adds to mounting evidence that aging deciduous forests in the region will function as C sinks for decades to come.  more » « less
Award ID(s):
1655095
PAR ID:
10449742
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecological Applications
Volume:
31
Issue:
7
ISSN:
1051-0761
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Microclimatic conditions change dramatically as forests age and impose strong filters on community assembly during succession. Light availability is the most limiting environmental factor in tropical wet forest succession; by contrast, water availability is predicted to strongly influence tropical dry forest (TDF) successional dynamics. While mechanisms underlying TDF successional trajectories are not well understood, observational studies have demonstrated that TDF communities transition from being dominated by species with conservative traits to species with acquisitive traits, the opposite of tropical wet forest. Determining how functional traits predict TDF tree species’ responses to changing environmental conditions could elucidate mechanisms underlying tree performance during TDF succession. We implemented a 6‐ha restoration experiment on a degraded Vertisol in Costa Rica to determine (1) how TDF tree species with different resource‐use strategies performed along a successional gradient and (2) how ecophysiological functional traits correlated with tree performance in simulated successional stages. We used two management treatments to simulate distinct successional stages including: clearing all remnant vegetation (early‐succession), or interplanting seedlings with no clearing (mid‐succession). We crossed these two management treatments (cleared/interplanted) with two species mixes with different resource‐use strategies (acquisitive/conservative) to examine their interaction. Overall seedling survival after 2 yr was low, 15.1–26.4% in the four resource‐use‐strategy × management‐treatment combinations, and did not differ between the management treatments or resource‐use‐strategy groups. However, seedling growth rates were dramatically higher for all species in the cleared treatment (year 1, 69.1% higher; year 2, 143.3% higher) and defined resource‐use strategies had some capacity to explain seedling performance. Overall, ecophysiological traits were better predictors of species’ growth and survival than resource‐use strategies defined by leaf and stem traits such as specific leaf area. Moreover, ecophysiological traits related to water use had a stronger influence on seedling performance in the cleared, early‐successional treatment, indicating that the influence of microclimatic conditions on tree survival and growth shifts predictably during TDF succession. Our findings suggest that ecophysiological traits should be explicitly considered to understand shifts in TDF functional composition during succession and that using these traits to design species mixes could greatly improve TDF restoration outcomes. 
    more » « less
  2. Temperate deciduous forests are an important contributor to the global carbon (C) sink. However, changes in environmental conditions and natural disturbances such as insect infestations can impact carbon sequestration capabilities of these forests. While, insect infestations are expected to increase in warmer future climates, there is a lack of knowledge on the quantitative impact of these natural disturbances on the carbon balance of temperate deciduous forests. In 2021, a record-breaking defoliation, caused by the spongy moth (Lymantria dispar dispar (LDD), formerly knows as the gypsy moth) occurred in eastern North America. In this study, we assess the impact of this spongy moth defoliation on carbon uptake in a mature oak-dominated temperate forest in the Great Lakes region in Canada, using eddy covariance flux data from 2012 to 2022. Study results showed that the forest was a large C sink with mean annual net ecosystem productivity (NEP) of 207 ± 77 g C m–2 yr−1 from 2012 to 2022, excluding 2021, which experienced the infestation. Over this period mean annual gross ecosystem productivity (GEP) was 1,398 ± 137 g C m–2 yr−1, while ecosystem respiration (RE) was 1,209 ± 139 g C m–2 yr−1. However, in 2021 due to defoliation in the early growing season, annual GEP of the forest declined to 959 g C m–2 yr−1, while annual RE increased to 1,345 g C m–2 yr−1 causing the forest to become a large source of C with annual NEP of -351 g C m–2 yr−1. The forest showed a rapid recovery from this major disturbance event, with annual GEP, RE, and NEP values of 1,671, 1,287, and 298 g C m–2 yr−1, respectively in 2022 indicating that the forest was once again a large C sink. This study demonstrates that major transient natural disturbances under changing climate can have a significant impact on forest C dynamics. The extent to which North American temperate forests will remain a major C sink will depend on the severity and intensity of these disturbance events and the rate of recovery of forests following disturbances. 
    more » « less
  3. Abstract Disturbances can interrupt feedbacks that maintain stable plant community structure and create windows of opportunity for vegetation to shift to alternative states. Boreal forests are dominated by tree species that overlap considerably in environmental niche, but there are few tests of what conditions initiate and sustain different forest states. Here, we examine patterns of post‐fire growth and density of tree seedlings in early succession and use structural equation models to estimate relative effects of environmental and pre‐fire conditions, fire characteristics, and biotic interactions. We surveyed tree seedling recruits for 13 yr across a broad range of environmental and fire conditions (n = 89) in Alaskan black spruce stands that burned in 2004. Densities of established seedlings at 13 yr were strongly determined by initial recruitment that occurred within 2 yr after fire. High proportional combustion of the soil organic layer (fire severity) led to increased densities of deciduous seedlings but not of black spruce and had a positive influence on aboveground biomass of all species. Biotic interactions such as mammalian herbivory or woody competition, potential mechanisms for relay floristic succession, had no detectable effects on tree seedling densities or biomass. Repeated surveys instead suggested persistent shifts in successional trajectories of tree communities from spruce to deciduous dominance at sites where high fire severity created positive conditions for deciduous seedling recruitment and growth. Unless future species interactions alter the deciduous dominance of tree seedling composition, the vegetation transformations that we observed in response to high fire severity are likely to persist over the short fire cycle that increasingly characterizes the fire regime of Interior Alaska. 
    more » « less
  4. Abstract Tropical forest understory regeneration occurs rapidly after disturbance with compositional trajectories that depend on species availability and environmental conditions. To predict future tropical forest regeneration dynamics, we need a deeper understanding of how pulse disturbance events, like hurricanes, interact with environmental variability to affect understory demography and composition. We examined fern and sapling mortality, recruitment, and community composition in relation to solar radiation and soil moisture using 17 years of forest dynamics data (2003–2019) from the Canopy Trimming Experiment in the Luquillo Experimental Forest, Puerto Rico. Solar radiation increased 150% and soil moisture increased 40% following canopy trimming of experimental plots relative to control plots. All plots were disturbed in 2017 by Hurricanes Irma and Maria, so experimentally trimmed plots presented the opportunity to study the effects of multiple hurricanes, while control plots isolated the effects of a single natural hurricane. Recruitment rates maximized at 0.14 individuals/plot/month for ferns and 0.20 stems/plot/month for saplings. Recruitment and mortality were distributed more evenly over the 17 years of monitoring in experimentally trimmed plots than in control plots; however, following Hurricane Maria demographic rates substantially increased in control plots only. In experimentally trimmed plots, the largest community compositional shifts occurred as a result of the trimming events, and compositional changes were greatest for control plots after Hurricane Maria in 2017. Pioneer tree and fern species increased in abundance in response to both simulated and natural hurricanes. Following Hurricane Maria, two dominant pioneer species,Cyathea arboreaandCecropia schreberiana, recruited abundantly, but only in control plots. In trimmed plots, increased solar radiation and soil moisture shifted understory species composition steadily toward pioneer and secondary‐successional species, with soil moisture interacting strongly with canopy trimming. Thus, both solar radiation and soil moisture are environmental drivers affecting pioneer species recruitment following disturbance, which interact with canopy opening following hurricanes. Our results suggest that if hurricane disturbances increase in frequency and severity, as suggested by climate change predictions, the understory regeneration of late‐successional species, such asManilkara bidentataandSloanea berteroana, which prefer deeper shade and slightly drier soil microsites, may become imperiled. 
    more » « less
  5. Many headwaters across temperate North America have uniform mid‐succession riparian forests recovering from historic land clearing. These young riparian stands contrast with late‐succession forests, which have complex structural characteristics including canopy gaps. Canopy gaps provide structural diversity that can be important for terrestrial species, and they are also hypothesized to be important features for aquatic environments. The light patches below gaps create productivity hotspots in streams and therefore create potential for increased stream apex predator abundances through bottom‐up food web drivers. However, increasing light may also affect stream temperature, a consideration for coldwater fish (salmonids). We established an experimental before‐after control‐impact study to explicitly assess how creating canopy gaps in the riparian forest affects the abundance and biomass of coastal cutthroat trout (Oncorhynchus clarkii clarkii) and Pacific giant salamanders (Dicamptodon tenebrosus) in paired reference and treatment reaches at five replicate streams. Gaps were designed to resemble those in old‐growth forests in the treatment reach of each system although wood was explicitly left out of the stream. At four of five sites, we found small and generally consistent positive responses in adult cutthroat trout and total vertebrate biomass to localized increases in light but only 2 years after treatment. Results suggest that opening riparian canopies adjacent to streams via gaps is a viable tool to enhance structural complexity of riparian forests without negatively impacting stream vertebrates; however, a single gap alone had small effects on aquatic vertebrates. More or larger gaps would likely be needed to notably enhance aquatic apex predators. 
    more » « less