skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nanowire biosensors with olfactory proteins: towards a genuine electronic nose with single molecule sensitivity and high selectivity
Abstract We describe the concept and roadmap of an engineered electronic nose with specificity towards analytes that differ by as little as one carbon atom, and sensitivity of being able to electrically register a single molecule of analyte. The analyte could be anything that natural noses can detect, e.g. trinitrotoluene (TNT), cocaine, aromatics, volatile organic compounds etc. The strategy envisioned is to genetically engineer a fused olfactory odorant receptor (odorant receptor (OR), a membrane-bound G-protein coupled receptor (GPCR) with high selectivity) to an ion channel protein, which opens in response to binding of the ligand to the OR. The lipid bilayer supporting the fused sensing protein would be intimately attached to a nanowire or nanotube network (either via a covalent tether or a non-covalent physisorption process), which would electrically detect the opening of the ion channel, and hence the binding of a single ligand to a single OR protein domain. Three man-made technological advances: (1) fused GPCR to ion channel protein, (2) nanowire sensing of single ion channel activity, and (3) lipid bilayer to nanotube/nanowire tethering chemistry and on natural technology (sensitivity and selectivity of OR domains to specific analytes) each have been demonstrated and/or studied independently. The combination of these three technological advances and the result of millions of years of evolution of OR proteins would enable the goal of single molecule sensing with specificity towards analytes that differ by as little as one carbon atom. This is both a review of the past and a vision of the future.  more » « less
Award ID(s):
2153425
PAR ID:
10449749
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Nanotechnology
Volume:
34
Issue:
46
ISSN:
0957-4484
Page Range / eLocation ID:
Article No. 465502
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nanowires have substantial potential as the sensor component in electronic sensing devices. However, surface functionalization of traditional nanowire and nanotube materials with short peptides that increase sensor selectivity and sensitivity requires complex chemistries with toxic reagents. In contrast, microorganisms can assemble pilin monomers into protein nanowires with intrinsic conductivity from renewable feedstocks, yielding an electronic material that is robust and stable in applications, but also biodegradable. Here we report that the sensitivity and selectivity of protein nanowire-based sensors can be modified with a simple plug and play genetic approach in which a short peptide sequence, designed to bind the analyte of interest, is incorporated into the pilin protein that is microbially assembled into nanowires. We employed a scalable Escherichia coli chassis to fabricate protein nanowires that displayed either a peptide previously demonstrated to effectively bind ammonia, or a peptide known to bind acetic acid. Sensors comprised of thin films of the nanowires amended with the ammonia-specific peptide had a ca. 100-fold greater response to ammonia than sensors made with unmodified protein nanowires. Protein nanowires with the peptide that binds acetic acid yielded a 4-fold higher response than nanowires without the peptide. The protein nanowire-based sensors had greater responses than previously reported sensors fabricated with other nanomaterials. The results demonstrate that protein nanowires with enhanced sensor response for analytes of interest can be fabricated with a flexible genetic strategy that sustainably eliminates the energy, environmental, and health concerns associated with other common nanomaterials. 
    more » « less
  2. Abstract Metabotropic glutamate receptor 2 (mGluR2), a subclass C member of the G protein-coupled receptor (GPCR) superfamily, is essential for regulating neurotransmitter signaling and facilitating synaptic adaptability in the central nervous system. This receptor, like other GPCRs, is highly sensitive to its surrounding lipid environment, where specific lipid compositions can influence its stability, conformational dynamics, and function. In particular, cholesteryl hemisuccinate (CHS) plays a critical role in stabilizing mGluR2 and modulating its structural states within cellular membranes and micellar environments. However, the molecular basis for this lipid-mediated modulation remains largely unexplored. To investigate the effects of CHS and lipid composition on mGluR2, we employed all-atom molecular dynamics simulations of mGluR2 embedded in both detergent micelles (BLMNG and CHS) and a POPC lipid bilayer containing 0%, 10%, and 25% CHS. These simulations were conducted for both active and inactive states of the receptor. Our findings reveal that CHS concentration modulates mGluR2’s structural stability and conformational behavior, with a marked impact observed within transmembrane helices TM1, TM2, and TM3, which constitute the core of the receptor’s transmembrane domain. In micelle environments, mGluR2 displayed unique conformational dynamics influenced by CHS, underscoring the receptor’s sensitivity to its lipid surroundings. Notably, a CHS concentration of 10% elicited more pronounced conformational changes than either cholesterol-depleted (0%) or cholesterol-enriched (25%) systems, indicating an optimal CHS range for maintaining structural stability. Our study provides atomistic insights into how lipid composition and CHS concentration impact mGluR2’s conformational landscape in distinct micelle and bilayer environments. These findings advance our understanding of lipid-mediated modulation in GPCR function, highlighting potential avenues for receptor-targeted drug design, particularly in cases where lipid interactions play a significant role in therapeutic efficacy. 
    more » « less
  3. G protein coupled receptors (GPCRs) exhibit varying degrees of selectivity for different G protein isoforms. Despite the abundant structures of GPCR-G protein complexes, little is known about the mechanism of G protein coupling specificity. The β2-adrenergic receptor is an example of GPCR with high selectivity for Gαs, the stimulatory G protein for adenylyl cyclase, and much weaker for the Gαi family of G proteins inhibiting adenylyl cyclase. By developing a new Gαi-biased agonist (LM189), we provide structural and biophysical evidence supporting that distinct conformations at ICL2 and TM6 are required for coupling of the different G protein subtypes Gαs and Gαi. These results deepen our understanding of G protein specificity and bias and can accelerate the design of ligands that select for preferred signaling pathways. 
    more » « less
  4. Monolayers of Ti3C2Tx MXene and bilayer structures formed by partially overlapping monolayer flakes exhibit opposite sensing responses to a large scope of molecular analytes. When exposed to reducing analytes, monolayer MXene flakes show increased electrical conductivity, i.e., an n-type behavior, while bilayer structures become less conductive, exhibiting a p-type behavior. On the contrary, both monolayers and bilayers show unidirectional sensing responses with increased resistivity when exposed to oxidizing analytes. The sensing responses of Ti3C2Tx monolayers and bilayers are dominated by entirely different mechanisms. The sensing behavior of MXene monolayers is dictated by the charge transfer from adsorbed molecules and the response direction is consistent with the donor/acceptor properties of the analyte and the intrinsic n-type character of Ti3C2Tx. In contrast, the bilayer MXene structures always show the same response regardless of the donor/acceptor character of the analyte, and the resistivity always increases because of the intercalation of molecules between the Ti3C2Tx layers. This study explains the sensing behavior of bulk MXene sensors based on multiflake assemblies, in which this intercalation mechanism results in universal increase in resistance that for many analytes is seemingly inconsistent with the n-type character of the material. By scaling MXene sensors down from multiflake to single-flake level, we disentangled the charge transfer and intercalation effects and unraveled their contributions. In particular, we show that the charge transfer has a much faster kinetics than the intercalation process. Finally, we demonstrate that the layer-dependent gas sensing properties of MXenes can be employed for the design of sensor devices with enhanced molecular recognition. 
    more » « less
  5. Chemoresponsive liquid crystal (LC) sensors are promising platforms for the detection of vapor-phase analytes. Understanding the transport of analyte molecules within LC films could guide the design of LC sensors with improved selectivity. In this work, we use molecular dynamics simulations to quantify the partitioning and diffusion of nine small-molecule analytes, including four common atmospheric pollutants, in model systems representative of LC sensors. We first parameterize all-atom models for 4-cyano-4′-pentylbiphenyl (5CB), a mesogen typically used for LC sensors, and all analytes. We validate these models by reproducing experimentally determined 5CB structural parameters, 5CB diffusivity, and analyte Henry's law constants in 5CB. Using the all-atom models, we calculate analyte solvation free energies and diffusivities in bulk 5CB. These simulation-derived quantities are then used to parameterize an analytical mass-transport model to predict sensor activation times. These results demonstrate that differences in analyte–LC interactions can translate into distinct activation times to distinguish activation by different analytes. Finally, we quantify the effect of LC composition by calculating analyte solvation free energies in TL205, a proprietary LC mixture. These calculations indicate that varying the LC composition can modulate activation times to further improve sensor selectivity. These results thus provide a computational framework for guiding LC sensor design by using molecular simulations to predict analyte transport as a function of LC composition. 
    more » « less