- Award ID(s):
- 2027102
- PAR ID:
- 10477366
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Biosensors and Bioelectronics
- Volume:
- 226
- Issue:
- C
- ISSN:
- 0956-5663
- Page Range / eLocation ID:
- 115147
- Subject(s) / Keyword(s):
- Protein nanowire Sustainable electronics e-biologics Nanowire sensor Electromicrobiology
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Electronic sensors based on biomaterials can lead to novel green technologies that are low cost, renewable, and eco-friendly. Here we demonstrate bioelectronic ammonia sensors made from protein nanowires harvested from the microorganism Geobacter sulfurreducens. The nanowire sensor responds to a broad range of ammonia concentrations (10 to 106 ppb), which covers the range relevant for industrial, environmental, and biomedical applications. The sensor also demonstrates high selectivity to ammonia compared to moisture and other common gases found in human breath. These results provide a proof-of-concept demonstration for developing protein nanowire based gas sensors for applications in industry, agriculture, environmental monitoring, and healthcare.more » « less
-
Abstract Sustainably produced biomaterials can greatly improve the biocompatibility of wearable sensor technologies while reducing the energy and environmental impacts of materials fabrication and disposal. An electronic sensor device in which the sensing element is a thin (≈2 µm) film of electrically conductive protein nanowires harvested from the microbe
Geobacter sulfurreducens is developed. The sensor rapidly responds to changes in humidity with high selectivity and sensitivity. The sensor is integrated on a flexible substrate as a wearable device, enabling real‐time monitoring of physiological conditions such as respiration and skin hydration. Noncontact body tracking is demonstrated with an array of sensors that detect a humidity gradient at distance from the skin with high sensitivity. Humidity gradients induce directional charge transport in the protein nanowires films, enabling the production of a current signal without applying an external voltage bias for powerless sensing. These results demonstrate the considerable promise for developing protein nanowire‐based wearable sensor devices. -
Abstract Despite extensive research on nanowires and nanosensors, the lack of manufacturing methods limits nanosensor commercialization. Here a new way of making nanowire sensors is demonstrated. Nanowire crystals of charge‐transfer salt, tetrathiafulvalene bromide or (TTF)Br, are electrochemically deposited across lines of microelectrodes made by photolithography to complete the sensor circuitry. A novel concept is the direct synthesis of nanowires on sensor substrates using pre‐existing patterns to direct the nanowire nucleation and crystallization. The gas sensing capability of the nanowire assembly is demonstrated for the detection of ammonia at a concentration range of 1–100 ppm by measuring the changes in its electrical impedance. The selectivity toward ammonia against water vapor, one of the most persistent challenges for wide adoption of nanosensors for gas detection, can be tuned by (TTF)Br nanowire chemical composition during synthesis. This work demonstrates a proof of concept toward scalable manufacturing of nanosensor devices via one‐step, substrate‐directed nucleation and crystallization.
-
Diamond-based sensors have shown great potential in the past few years due to their unique physicochemical properties. We report on the development of high-performance nitrogen-doped ultrananocrystalline diamond (UNCD) nanowire-based methane (CH4) gas sensors, taking advantage of a large surface-to-volume ratio and a small active area offered by the 1D nanowire geometry. The morphologic surface and crystalline structures of UNCD are also characterized by using scanning electron microscopy (SEM) and Raman scattering, respectively. By using synthesized nanowire arrays combined with 4-pin electrical electrodes, prototypic highly sensitive CH4 gas sensors have been designed, fabricated and tested. Various parameters including the sensitivity, response and recovery times, and thermal effect on the performance of the gas sensor have also been investigated in order to quantitate the sensing ability. Enhanced by the small grain size and porosity of the nanowire structure, fabricated nanowire UNCD sensors demonstrated a high sensitivity to CH4 gas at room temperature down to 2 ppm, as well as fast response and recovery times which are almost 10 times faster than that of regular nanodiamond thin film based sensors.more » « less
-
null (Ed.)Gallium oxide (Ga 2 O 3 ) and its most stable modification, monoclinic β-Ga 2 O 3 , is emerging as a primary material for power electronic devices, gas sensors and optical devices due to a high breakdown voltage, large bandgap, and optical transparency combined with electrical conductivity. Growth of β-Ga 2 O 3 is challenging and most methods require very high temperatures. Nanowires of β-Ga 2 O 3 have been investigated extensively as they might be advantageous for devices such as nanowire field effect transistors, and gas sensors benefiting from a large surface to volume ratio, among others. Here, we report a synthesis approach using a sulfide precursor (Ga 2 S 3 ), which requires relatively low substrate temperatures and short growth times to produce high-quality single crystalline β-Ga 2 O 3 nanowires in high yields. Even though Au- or Ag-rich nanoparticles are invariably observed at the nanowire tips, they merely serve as nucleation seeds while the nanowire growth proceeds via supply and local oxidation of gallium at the substrate interface. Absorption and cathodoluminescence spectroscopy on individual nanowires confirms a wide bandgap of 4.63 eV and strong luminescence with a maximum ∼2.7 eV. Determining the growth process, morphology, composition and optoelectronic properties on the single nanowire level is key to further application of the β-Ga 2 O 3 nanowires in electronic devices.more » « less