skip to main content


Title: Quantifying Seasonal Seagrass Effects on Flow and Sediment Dynamics in a Back‐Barrier Bay
Abstract

Seagrass growth and senescence exert a strong influence on flow structure and sediment transport processes in coastal environments. However, most previous studies of seasonal seagrass effects either focused on small‐scale field measurements or did not fully resolve the synergistic effects of flow‐wave‐vegetation‐sediment interaction at a meadow scale. In this study, we applied a coupled Delft3D‐FLOW and SWAN model that included effects of seagrass on flow, waves, and sediment resuspension in a shallow coastal bay to quantify seasonal seagrass impacts on bay dynamics. The model was extensively validated using seasonal field hydrodynamic and suspended sediment data within a seagrass meadow and a nearby unvegetated site. Our results show that seagrass meadows significantly attenuated flow (60%) and waves (20%) and reduced suspended sediment concentration (85%) during summer when its density reached a maximum. Probability density distributions of combined wave‐current bed shear stress within the seagrass meadow indicate that significant reductions in sediment resuspension during summer were mainly caused by flow retardation rather than wave attenuation. Although low‐density seagrass in winter resulted in much smaller reductions in flow and waves compared with summer meadows, small changes in winter seagrass density resulted in large differences in the magnitude of attenuation of flow and shear stress. Similarly, while high seagrass densities effectively trapped sediment during summer, small changes in winter density resulted in strong changes in net sediment flux into/out of the meadow. At our study site, low seagrass densities provided significant reductions in wintertime sediment loss compared to losses associated with completely unvegetated conditions.

 
more » « less
Award ID(s):
1832221
NSF-PAR ID:
10449824
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
126
Issue:
2
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Seagrass meadows are important carbon sinks in the global coastal carbon cycle yet are also among the most rapidly declining marine habitats. Their ability to sequester carbon depends on flow–sediment–vegetation interactions that facilitate net deposition, as well as high rates of primary production. However, the effects of seasonal and episodic variations in seagrass density on net sediment and carbon accumulation have not been well quantified. Understanding these dynamics provides insight into how carbon accumulation in seagrass meadows responds to disturbance events and climate change. Here, we apply a spatially resolved sediment transport model that includes coupling of seagrass effects on flow, waves, and sediment resuspension in a seagrass meadow to quantify seasonal rates of sediment and carbon accumulation in the meadow. Our results show that organic carbon accumulation rates were largely determined by sediment accumulation and that they both changed non‐linearly as a function of seagrass shoot density. While seagrass meadows effectively trapped sediment at meadow edges during spring–summer growth seasons, during winter senescence low‐density meadows (< 160 shoots m−2) were erosional with rates sensitive to density. Small variations in winter densities resulted in large changes in annual sediment and carbon accumulation in the meadow; meadow‐scale (hundreds of square meters) summer seagrass dieback due to marine heatwaves can result in annual erosion and carbon loss. Our findings highlight the strong temporal and spatial variability in sediment accumulation within seagrass meadows and the implications for annual sediment carbon burial rates and the resilience of seagrass carbon stocks under future climate change.

     
    more » « less
  2. In both continuous and fragmented seagrass ecosystems, the vegetation edge can be a location of abrupt hydrodynamic change, with impacts to both ecological and physical processes. We address how flow and wave activity change across seagrass meadow edges and the effects of vegetation on sediment dynamics and bivalve recruitment. TwoZostera marinaseagrass meadow sites were monitored: a high-density site with >500 shoots m-2and a low-density site with <250 shoots m-2. Mean flow velocities were significantly reduced in seagrass vegetation adjacent to edges, with reductions compared to unvegetated areas ranging from 30-75%. Recruitment of juvenile bivalves was significantly elevated within vegetation. No significant differences in wave activity or sediment suspension and/or deposition were found spatially across a 10 m distance from a seagrass edge, but significant temporal variability was observed, caused by periodic storms. Wave height was a major predictor for sediment movement along seagrass edges, with an observed 10-fold increase in sediment collection within benthic traps following severe storms. These results were found across various heterogeneous edge configurations and reveal abrupt hydrodynamic responses of both mean flow and turbulence to occur at short spatial scales (1-10 m), with changes to wave and sediment deposition and/or suspension conditions only occurring over larger spatial distances (~100 m). Changes to the hydrodynamic regime were therefore found to be driven by meteorological conditions (e.g. winds, storms) on daily timescales and by changes in seagrass shoot density, altering both bivalve recruitment and sediment dynamics on longer temporal and/or spatial timescales.

     
    more » « less
  3. In June 2015, a marine heatwave triggered a severe eelgrassZostera marinadie-off event at the Virginia Coast Reserve (USA), followed by a slow and spatially heterogeneous recovery. We investigated the effects of heat stress on seagrass loss and recovery. Using hourly summer water temperature measurements from 2016-2020, we developed a novel approach to quantifying the stress of ocean warming on seagrass meadows. We defined 2 metrics: cumulative heat stress (as heating degree-hours, HDHs) and heat stress relief (as cooling degree-hours, CDHs), relative to a 28.6°C eelgrass ecosystem thermal tolerance threshold previously determined at this site from aquatic eddy covariance measurements. These metrics were compared to spatiotemporal patterns of summertime eelgrass shoot density and length. We found that the healthiest parts of the meadow benefited from greater heat stress relief (2-3×) due to tidal cooling (inputs of cooler ocean water through ocean inlets) during warm periods, resulting in ~65% higher shoot densities compared to the center of the meadow, which experienced higher heat stress (2×) and less relief. We also calculated the amount of heat stress preceding the eelgrass die-off in summer 2015, and found that this event was triggered by a cumulative heat stress of ~100-200°C-hours during the peak growing season. Sulfur isotope analyses of eelgrass leaves and sediment also suggested that sulfide toxicity likely contributed to eelgrass decline. Overall, our metrics incorporate physiological heat tolerances with the duration and intensity of heat stress and relief, and thus lay the groundwork for forecasting seagrass meadow vulnerability and resilience to future warming oceans.

     
    more » « less
  4. null (Ed.)
    Worldwide, seagrass meadows accumulate significant stocks of organic carbon (C), known as “blue” carbon, which can remain buried for decades to centuries. However, when seagrass meadows are disturbed, these C stocks may be remineralized, leading to significant CO 2 emissions. Increasing ocean temperatures, and increasing frequency and severity of heat waves, threaten seagrass meadows and their sediment blue C. To date, no study has directly measured the impact of seagrass declines from high temperatures on sediment C stocks. Here, we use a long-term record of sediment C stocks from a 7-km 2 , restored eelgrass ( Zostera marina ) meadow to show that seagrass dieback following a single marine heat wave (MHW) led to significant losses of sediment C. Patterns of sediment C loss and re-accumulation lagged patterns of seagrass recovery. Sediment C losses were concentrated within the central area of the meadow, where sites experienced extreme shoot density declines of 90% during the MHW and net losses of 20% of sediment C over the following 3 years. However, this effect was not uniform; outer meadow sites showed little evidence of shoot declines during the MHW and had net increases of 60% of sediment C over the following 3 years. Overall, sites with higher seagrass recovery maintained 1.7x as much C compared to sites with lower recovery. Our study demonstrates that while seagrass blue C is vulnerable to MHWs, localization of seagrass loss can prevent meadow-wide C losses. Long-term (decadal and beyond) stability of seagrass blue C depends on seagrass resilience to short-term disturbance events. 
    more » « less
  5. Climate change is impacting marine ecosystem community dynamics on a global scale. While many have assessed direct effects of climate change, indirect effects on marine ecosystems produced by biotic interactions remain poorly understood. For example, warming-induced range expansions and increased consumption rates of herbivores can lead to significant and unexpected changes in seagrass-dominated ecosystems. To better understand the threats tropicalization presents for the functioning of turtlegrass ( Thalassia testudinum ) meadows, we focused on the extensive turtlegrass beds of St. Joseph Bay, Florida in the northern Gulf of Mexico, a location with increasing numbers of tropically-associated green turtles. Our goals were to investigate experimentally how different grazing rates (natural and simulated),including high levels reflective of green turtle herbivory, coupled with nutrient supply, might alter turtlegrass structure and functioning in a higher latitude, subtropical turtlegrass meadow. We found that 4 months of varying levels of herbivory did not affect turtlegrass productivity, while 7 months of herbivory reduced percent cover, and 10 months reduced shoot density. Nutrient additions had few important effects. Ten months into the study, a massive recruitment of the herbivorous sea urchin ( Lytechinus variegatus ), whose densities reached 19 urchins/m 2 completely overgrazed our study area and a large portion of the lush turtlegrass meadows of St. Joseph Bay. While local turtlegrass overgrazing had been previously noted at these urchin densities, a total loss of seagrass in such a large area has rarely ever been recorded. Overgrazing of the kind we observed, likely a result of both urchin and increasing green turtle grazing, can result in the loss of many key ecosystem services. As tropicalization continues, understanding how changes in biotic interactions, such as increased herbivory, affect higher latitude seagrass meadows will be necessary for their proper management and conservation. 
    more » « less