skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Measuring how two proteins affect each other's net charge in a crowded environment
Abstract Theory predicts that the net charge (Z) of a protein can be altered by the net charge of a neighboring protein as the two approach one another below the Debye length. This type of charge regulation suggests that a protein's charge and perhaps function might be affected by neighboring proteins without direct binding. Charge regulation during protein crowding has never been directly measured due to analytical challenges. Here, we show that lysine specific protein crosslinkers (NHS ester‐Staudinger pairs) can be used to mimic crowding by linking two non‐interacting proteins at a maximal distance of ~7.9 Å. The net charge of the regioisomeric dimers and preceding monomers can then be determined with lysine‐acyl “protein charge ladders” and capillary electrophoresis. As a proof of concept, we covalently linked myoglobin (Zmonomer = −0.43 ± 0.01) and α‐lactalbumin (Zmonomer = −4.63 ± 0.05). Amide hydrogen/deuterium exchange and circular dichroism spectroscopy demonstrated that crosslinking did not significantly alter the structure of either protein or result in direct binding (thus mimicking crowding). Ultimately, capillary electrophoretic analysis of the dimeric charge ladder detected a change in charge of ΔZ = −0.04 ± 0.09 upon crowding by this pair (Zdimer = −5.10 ± 0.07). These small values of ΔZare not necessarily general to protein crowding (qualitatively or quantitatively) but will vary per protein size, charge, and solvent conditions.  more » « less
Award ID(s):
1856449
PAR ID:
10449849
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Protein Science
Volume:
30
Issue:
8
ISSN:
0961-8368
Page Range / eLocation ID:
p. 1594-1605
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Repulsive electrostatic forces between prion‐like proteins are a barrier against aggregation. In neuropharmacology, however, a prion's net charge (Z) is not a targeted parameter. Compounds that selectively boost prionZremain unreported. Here, we synthesized compounds that amplified the negative charge of misfolded superoxide dismutase‐1 (SOD1) by acetylating lysine‐NH3+in amyloid‐SOD1, without acetylating native‐SOD1. Compounds resembled a “ball and chain” mace: a rigid amyloid‐binding “handle” (benzothiazole, stilbene, or styrylpyridine); an aryl ester “ball”; and a triethylene glycol chain connecting ball to handle. At stoichiometric excess, compounds acetylated up to 9 of 11 lysine per misfolded subunit (ΔZfibril=−8100 per 103subunits). Acetylated amyloid‐SOD1 seeded aggregation more slowly than unacetylated amyloid‐SOD1 in vitro and organotypic spinal cord (these effects were partially due to compound binding). Compounds exhibited reactivity with other amyloid and non‐amyloid proteins (e.g., fibrillar α‐synuclein was peracetylated; serum albumin was partially acetylated; carbonic anhydrase was largely unacetylated). 
    more » « less
  2. Abstract The degree by which metalloproteins partially regulate net charge (Z) upon electron transfer (ET) was recently measured for the first time using “protein charge ladders” of azurin, cytochrome c, and myoglobin [Angew. Chem. Int. Ed.2018,57(19), 5364–5368;Angew. Chem.2018,130, 5462–5466]. Here, we show that Cu, Zn superoxide dismutase (SOD1) is unique among proteins in its ability to resist changes in net charge upon single ET (e.g., ΔZET(SOD1)=0.05±0.08 per electron, compared to ΔZET(Cyt‐c)=1.19±0.02). This total regulation of net charge by SOD1 is attributed to the protonation of the bridging histidine upon copper reduction, yielding redox centers that are isoelectric at both copper oxidation states. Charge regulation by SOD1 would prevent long range coulombic perturbations to residue pKa’s upon ET at copper, allowing SOD1’s “electrostatic loop” to attract superoxide with equal affinity (at both redox states of copper) during diffusion‐limited reduction and oxidation of superoxide. 
    more » « less
  3. Abstract The electrostatic effects of protein crowding have not been systematically explored. Rather, protein crowding is generally studied with co‐solvents or crowders that are electrostatically neutral, with no methods to measure how the net charge ( Z ) of a crowder affects protein function. For example, can the activity of an enzyme be affected electrostatically by the net charge of its neighbor in crowded milieu? This paper reports a method for crowding proteins of different net charge to an enzyme via semi‐random chemical crosslinking. As a proof of concept, RNase A was crowded (at distances ≤ the Debye length) via crosslinking to different heme proteins with Z  = +8.50 ± 0.04, Z  = +6.39 ± 0.12, or Z  = −10.30 ± 1.32. Crosslinking did not disrupt the structure of proteins, according to amide H/D exchange, and did not inhibit RNase A activity. For RNase A, we found that the electrostatic environment of each crowded neighbor had significant effects on rates of RNA hydrolysis. Crowding with cationic cytochrome c led to increases in activity, while crowding with anionic “supercharged” cytochrome c or myoglobin diminished activity. Surprisingly, electrostatic crowding effects were amplified at high ionic strength ( I  = 0.201 M) and attenuated at low ionic strength ( I  = 0.011 M). This salt dependence might be caused by a unique set of electric double layers at the dimer interspace (maximum distance of 8 Å, which cannot accommodate four layers). This new method of crowding via crosslinking can be used to search for electrostatic effects in protein crowding. 
    more » « less
  4. Abstract Two related classes of ligand-binding hemec-containing proteins with a high degree of structural homology have been identified and characterized over recent decades: cytochromes P460 (cyts P460), defined by an unusual heme-lysine cross-link, and cytochromesc′-β (cytsc′-β), containing a canonicalc-heme without the lysine cross-link. The shared protein fold of the cyt P460-cytc′-β superfamily can accommodate a variety of heme environments with entirely different reactivities. On the one hand, cyts P460 with polar distal pockets have been shown to oxidize NH2OH to NO and/or N2O via proton-coupled electron transfer. On the other hand, cytsc′-β with hydrophobic distal pockets have a proposed gas binding function similar to the unrelated, but more extensively characterized, alpha helical cytochromesc′. Recent studies have also identified ‘halfway house’ proteins (cyts P460 with non-polar heme pockets and cytsc′-β with polar distal heme pockets) with functions yet to be resolved. Here, we review the structural, spectroscopic and enzymatic properties of the cyt P460-cytc′-β superfamily with a view to understanding the structural determinants of their different functional properties. Graphical abstract 
    more » « less
  5. Protein succinylation has recently emerged as an important and common post-translation modification (PTM) that occurs on lysine residues. Succinylation is notable both in its size (e.g., at 100 Da, it is one of the larger chemical PTMs) and in its ability to modify the net charge of the modified lysine residue from + 1 to − 1 at physiological pH. The gross local changes that occur in proteins upon succinylation have been shown to correspond with changes in gene activity and to be perturbed by defects in the citric acid cycle. These observations, together with the fact that succinate is generated as a metabolic intermediate during cellular respiration, have led to suggestions that protein succinylation may play a role in the interaction between cellular metabolism and important cellular functions. For instance, succinylation likely represents an important aspect of genomic regulation and repair and may have important consequences in the etiology of a number of disease states. In this study, we developed DeepSuccinylSite, a novel prediction tool that uses deep learning methodology along with embedding to identify succinylation sites in proteins based on their primary structure. 
    more » « less