skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DeepSuccinylSite: a deep learning based approach for protein succinylation site prediction.
Protein succinylation has recently emerged as an important and common post-translation modification (PTM) that occurs on lysine residues. Succinylation is notable both in its size (e.g., at 100 Da, it is one of the larger chemical PTMs) and in its ability to modify the net charge of the modified lysine residue from + 1 to − 1 at physiological pH. The gross local changes that occur in proteins upon succinylation have been shown to correspond with changes in gene activity and to be perturbed by defects in the citric acid cycle. These observations, together with the fact that succinate is generated as a metabolic intermediate during cellular respiration, have led to suggestions that protein succinylation may play a role in the interaction between cellular metabolism and important cellular functions. For instance, succinylation likely represents an important aspect of genomic regulation and repair and may have important consequences in the etiology of a number of disease states. In this study, we developed DeepSuccinylSite, a novel prediction tool that uses deep learning methodology along with embedding to identify succinylation sites in proteins based on their primary structure.  more » « less
Award ID(s):
1901191
PAR ID:
10480256
Author(s) / Creator(s):
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
BMC bioinformatics
ISSN:
1471-2105
Subject(s) / Keyword(s):
Succinylation Deep learning Convolutional neural network Recurrent neural network Long short-term memory Embedding
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Intrinsically disordered proteins are frequent targets for functional regulation through post-translational modification due to their high accessibility to modifying enzymes and the strong influence of changes in primary structure on their chemical properties. While lysine N ε -acetylation was first observed as a common modification of histone tails, proteomic data suggest that lysine acetylation is ubiquitous among both nuclear and cytosolic proteins. However, compared with our biophysical understanding of the other common post-translational modifications, mechanistic studies to document how lysine N ε -acetyl marks are placed, utilized to transduce signals, and eliminated when signals need to be turned off, have not kept pace with proteomic discoveries. Herein we report a nuclear magnetic resonance method to monitor N ε -lysine acetylation through enzymatic installation of a 13 C-acetyl probe on a protein substrate, followed by detection through 13 C direct-detect spectroscopy. We demonstrate the ease and utility of this method using histone H3 tail acetylation as a model. The clearest advantage to this method is that it requires no exogenous tags that would otherwise add steric bulk, change the chemical properties of the modified lysine, or generally interfere with downstream biochemical processes. The non-perturbing nature of this tagging method is beneficial for application in any system where changes to local structure and chemical properties beyond those imparted by lysine modification are unacceptable, including intrinsically disordered proteins, bromodomain containing protein complexes, and lysine deacetylase enzyme assays. 
    more » « less
  2. Abstract Protein posttranslational modification (PTM) is a biochemical mechanism benefitting cellular adaptation to dynamic intracellular and environmental conditions. Recently, several acylation marks have been identified as new protein PTMs occurring on specific lysine residues in mammalian cells: isobutyrylation, methacrylation, benzoylation, isonicotinylation, and lactylation. These acylation marks were initially discovered to occur on nucleosomal histones, but they potentially occur as prevalent biomarkers on non‐histone proteins as well. The existence of these PTMs is a downstream consequence of metabolism and demonstrates the intimate crosstalk between active cellular metabolites and regulation of protein function. Emerging evidence indicates that these acylation marks on histones affect DNA transcription and are functionally distinct from the well‐studied lysine acetylation. Herein, we discuss enzymatic regulation and metabolic etiology of these acylations, 'reader' proteins that recognize different acylations, and their possible physiological and pathological functions. Several of these modifications correlate with other well‐studied acylations and fine‐tune the regulation of gene expression. Overall, findings of these acylation marks reveal new molecular links between metabolism and epigenetics and open up many questions for future investigation. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. 
    more » « less
  3. Syntrophomonas wolfei is an anaerobic syntrophic microbe that degrades short-chain fatty acids to acetate, hydrogen, and/or formate. This thermodynamically unfavorable process proceeds through a series of reactive acyl-Coenzyme A species (RACS). In other prokaryotic and eukaryotic systems, the production of intrinsically reactive metabolites correlates with acyl-lysine modifications, which have been shown to play a significant role in metabolic processes. Analogous studies with syntrophic bacteria, however, are relatively unexplored and we hypothesized that highly abundant acylations could exist in S. wolfei proteins, corresponding to the RACS derived from degrading fatty acids. Here, by mass spectrometry-based proteomics (LC–MS/MS), we characterize and compare acylome profiles of two S. wolfei subspecies grown on different carbon substrates. Because modified S. wolfei proteins are sufficiently abundant to analyze post-translational modifications (PTMs) without antibody enrichment, we could identify types of acylations comprehensively, observing six types (acetyl-, butyryl-, 3- hydroxybutyryl-, crotonyl-, valeryl-, and hexanyl-lysine), two of which have not been reported in any system previously. All of the acyl-PTMs identified correspond directly to RACS in fatty acid degradation pathways. A total of 369 sites of modification were identified on 237 proteins. Structural studies and in vitro acylation assays of a heavily modified enzyme, acetyl-CoA transferase, provided insight on the potential impact of these acyl-protein modifications. The extensive changes in acylation-type, abundance, and modification sites with carbon substrate suggest that protein acylation by RACS may be an important regulator of syntrophy. 
    more » « less
  4. Abstract Domain antibodies such as monobodies provide an attractive immunoglobin fold for evolving high‐affinity protein binders targeting the intracellular proteins implicated in cell signalling. However, it remains a challenge to endow cell permeability to these small and versatile protein binders. Here, we report a streamlined approach combining orthogonal crosslinking afforded by a genetically encodedβ‐lactam‐lysine (BeLaK) and genetic supercharging to generate cell‐penetrating monobodies. When introduced to the N‐terminalβ‐strand of a series of supercharged monobodies, BeLaK enabled efficient inter‐strand crosslinking with the neighbouring lysine. Compared to its non‐crosslinked counterpart, a BeLaK‐crosslinked, +18‐charged monobody exhibited enhanced thermostability and greater cellular uptake at 40 nM. Moreover, this structurally rigidified, supercharged monobody inhibited ERK1/2 phosphorylation in KYSE‐520 esophageal cancer cell line at sub‐micromolar concentration, indicating significant endosomal escape after endocytosis. Together, the discovery of this BeLaK‐encoded, rigidified immunoglobin fold should facilitate the design of cell‐penetrating monobodies targeting intracellular signalling proteins. 
    more » « less
  5. null (Ed.)
    Coronaviruses, like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), encode a nucleotidyl transferase in the N-terminal (NiRAN) domain of the nonstructural protein (nsp) 12 protein within the RNA dependent RNA polymerase. Here we show the detection of guanosine monophosphate (GMP) and uridine monophosphate-modified amino acids in nidovirus proteins using heavy isotope-assisted mass spectrometry (MS) and MS/MS peptide sequencing. We identified lysine-143 in the equine arteritis virus (EAV) protein, nsp7, as a primary site of in vitro GMP attachment via a phosphoramide bond. In SARS-CoV-2 replicase proteins, we demonstrate nsp12-mediated nucleotidylation of nsp7 lysine-2. Our results demonstrate new strategies for detecting GMP-peptide linkages that can be adapted for higher throughput screening using mass spectrometric technologies. These data are expected to be important for a rapid and timely characterization of a new enzymatic activity in SARS-CoV-2 that may be an attractive drug target aimed at limiting viral replication in infected patients. 
    more » « less