skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Process development for the laser powder bed fusion of WC‐Ni Cermets using sintered‐agglomerated powder
Abstract Although ceramic particle‐metal matrix materials (i.e., cermets) can offer superior performance, manufacturing these materials via conventional means is difficult compared to the manufacturing of metal alloys. This study leverages the laser powder bed fusion (LPBF) process to additively manufacture dense tungsten carbide (WC)‐17 wt.% nickel (Ni) composite specimens using novel spherical, sintered‐agglomerated composite powder. A range of processing parameters yielding high‐density specimens was discovered using a sequential series of experiments comprised of single bead, multi‐layer, and cylindrical builds. Cylinders with a relative density >99% were fabricated and characterized in terms of microstructure, chemical composition, and hardness. Scanning electron microscopy images show favorable wetting between the Ni binder and carbide particles without any phase segregation and laser processing increased the average carbide particle size. Energy dispersive X‐ray and X‐ray diffraction analyses detected traces of secondary products after laser processing. For samples processed at high energy densities, complex carbides and carbon agglomerate phases were detected. The maximum hardness of 60.38 Rockwell C is achieved in the printed samples. The successful builds in this study open the way for LPBF of dense WC‐Ni parts with a large workable laser power‐laser velocity processing window.  more » « less
Award ID(s):
1751605
PAR ID:
10445976
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
International Journal of Applied Ceramic Technology
Volume:
19
Issue:
3
ISSN:
1546-542X
Page Range / eLocation ID:
p. 1328-1340
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study binder jets a tungsten carbide‐nickel (WC‐Ni) sintered‐agglomerated composite powder, and postprocesses the preforms using an initial sintering step followed by a hot isostatic pressing (HIP) step. The effects of sintering temperatures, sintering durations, and HIP temperatures on notable properties (e.g., porosity, microstructure, hardness, and oxidation behavior) are quantified. The highest average relative density produced in this study was 96.8%, and volumetric shrinkage of these coupons was about 64%. Microstructural characterization shows that the WC grains are homogenously distributed throughout the nickel matrix and grow to an average diameter of 1.6  (a 60% increase) during processing. X‐ray diffraction patterns indicate that no unwanted products were formed. Processed coupons achieved a maximum hardness of 54 Rockwell C, limited by their internal porosity. Oxidation tests result in the production of WO3and NiWO4at temperatures above 600°C. Methodologies and results from this study can be leveraged to additively manufacture highly dense, geometrically complex WC‐Ni parts with small carbide grains, low nickel content, desirable microstructure, and suitable functional properties. 
    more » « less
  2. This study investigated the impact of low-temperature heat treatments on the mechanical and thermophysical properties of Cu-10Sn alloys fabricated by a laser powder bed fusion (LPBF) additive manufacturing (AM) process. The microstructure, phase structure, and mechanical and thermal properties of the LPBF Cu-10Sn samples were comparatively investigated under both the as-fabricated (AF) condition and after low-temperature heat treatments at 140, 180, 220, 260, and 300 °C. The results showed that the low-temperature heat treatments did not significantly affect the phase and grain structures of the Cu-10Sn alloys. Both pre- and post-treatment samples displayed consistent grain sizes, with no obvious X-ray diffraction angle shift for the α phase, indicating that atom diffusion of the Sn element is beyond the detection resolution of X-ray diffractometers (XRD). However, the 180 °C heat-treated sample exhibited the highest hardness, while the AF samples had the lowest hardness, which was most likely due to the generation of precipitates according to thermodynamics modeling. Heat-treated samples also displayed higher thermal diffusivity values than their AF counterpart. The AF sample had the longest lifetime of ~0.19 nanoseconds (ns) in the positron annihilation lifetime spectroscopy (PALS) test, indicating the presence of the most atomic-level defects. 
    more » « less
  3. Purpose There is recent emphasis on designing new materials and alloys specifically for metal additive manufacturing (AM) processes, in contrast to AM of existing alloys that were developed for other traditional manufacturing methods involving considerably different physics. Process optimization to determine processing recipes for newly developed materials is expensive and time-consuming. The purpose of the current work is to use a systematic printability assessment framework developed by the co-authors to determine windows of processing parameters to print defect-free parts from a binary nickel-niobium alloy (NiNb5) using laser powder bed fusion (LPBF) metal AM. Design/methodology/approach The printability assessment framework integrates analytical thermal modeling, uncertainty quantification and experimental characterization to determine processing windows for NiNb5 in an accelerated fashion. Test coupons and mechanical test samples were fabricated on a ProX 200 commercial LPBF system. A series of density, microstructure and mechanical property characterization was conducted to validate the proposed framework. Findings Near fully-dense parts with more than 99% density were successfully printed using the proposed framework. Furthermore, the mechanical properties of as-printed parts showed low variability, good tensile strength of up to 662 MPa and tensile ductility 51% higher than what has been reported in the literature. Originality/value Although many literature studies investigate process optimization for metal AM, there is a lack of a systematic printability assessment framework to determine manufacturing process parameters for newly designed AM materials in an accelerated fashion. Moreover, the majority of existing process optimization approaches involve either time- and cost-intensive experimental campaigns or require the use of proprietary computational materials codes. Through the use of a readily accessible analytical thermal model coupled with statistical calibration and uncertainty quantification techniques, the proposed framework achieves both efficiency and accessibility to the user. Furthermore, this study demonstrates that following this framework results in printed parts with low degrees of variability in their mechanical properties. 
    more » « less
  4. null (Ed.)
    Laser powder bed fusion (LPBF) is an additive manufacturing technology with the capability of printing complex metal parts directly from digital models. Between two available emission modes employed in LPBF printing systems, pulsed wave (PW) emission provides more control over the heat input compared to continuous wave (CW) emission, which is highly beneficial for printing parts with intricate features. However, parts printed with pulsed wave LPBF (PW-LPBF) commonly contain pores, which degrade their mechanical properties. In this study, we reveal pore formation mechanisms during PW-LPBF in real time by using an in-situ high-speed synchrotron x-ray imaging technique. We found that vapor depression collapse proceeds when the laser irradiation stops within one pulse, resulting in occasional pore formation during PW-LPBF. We also revealed that the melt ejection and rapid melt pool solidification during pulsed-wave laser melting resulted in cavity formation and subsequent formation of a pore pattern in the melted track. The pore formation dynamics revealed here may provide guidance on developing pore elimination approaches. 
    more » « less
  5. The primary objective of this study is to clarify the fundamental question of whether, in principle, it is possible to dispense with a prior solution annealing process in favor of a direct aging heat treatment for specimens of maraging stainless steel grade X3NiCoMoTi18‐9‐5 (1.2709) produced by laser powder bed fusion (LPBF). The waiver of a solution annealing process would significantly increase the process efficiency and thus support a sustainable and resource‐friendly production of such components. Therefore, the hardness, microstructure, and the present phases of specimens in as‐built + aged condition (AB + A) and solution‐annealed + aged (SOL + A) are examined during this study. Initially, an extended parameter study is performed using a Renishaw AM 250 LPBF system equipped with a pulsed mode laser system to achieve the highest possible apparent density. As test specimens, small cubes are produced for parameter study and are analyzed for porosity by means of optical microscopy. To investigate the relationship between microstructure and hardness in different material states, one series of specimens is aged directly after LPBF processing in the as‐built state (AB + A). For comparison, the other series was solution annealed at 820 °C for 60 min, quenched in water and then aged (SOL + A). A maximum hardness value of 614 HV1.0 is achieved for specimen aged at 490 °C for 120 min in as built condition (AB + A), while 624 HV1.0 was measured for specimen aged at 490 °C for 180 min in conventionally solution annealed + aged (SOL + A) condition. Significant austenite reversion is not observed at aging temperature of 490 °C in both cases. Aging of specimens at temperatures of 540 and 600 °C resulted in reduction of specimen hardness due to higher percentage of austenite reversion. No significant difference between the hardness values of AB + A and SOL + A specimens is observed. It can therefore be concluded that, in principle, conventional solution annealing and ageing can be dispensed with in favor of direct aging. However, as the results are based on small sized specimens, further investigations into the scalability are needed. 
    more » « less