skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Climatic and Geochemical Controls on Soil Carbon at the Continental Scale: Interactions and Thresholds
Abstract

Previous studies found conflicting results on the importance of temperature and precipitation versus geochemical variables for predicting soil organic carbon (SOC) concentrations and trends with depth, and most utilized linear statistical models. To reconcile the controversy, we used data from 2574 mineral horizons from 675 pits from National Ecological Observatory Network sites across North America, typically collected to 1 m depth. Climate was a fundamental predictor of SOC and played similarly important roles as some geochemical predictors. Yet, this only emerged in the generalized additive mixed model and random forest model and was obscured in the linear mixed model. Relationships between water availability and SOC were strongest in very dry ecosystems and SOC increased most strongly at mean annual temperature < 0°C. In all models, depth, oxalate‐extractable Al (Alox), pH, and exchangeable calcium plus exchangeable magnesium were important while silt + clay, oxalate‐extractable Fe (Feox), and vegetation type were weaker predictors. Climate and pH were independently related to SOC and also interacted with geochemical composition: Feoxand Aloxrelated more strongly to SOC in wet or cold climates. Most predictors had nonlinear threshold relationships with SOC, and a saturating response to increasing reactive metals indicates soils where SOC might be limited by C inputs. We observed a mostly constant relative importance of geochemical and climate predictors of SOC with increasing depth, challenging previous statements. Overall, our findings challenge the notion that climate is redundant after accounting for geochemistry and demonstrate that considering their nonlinearities and interactions improves spatial predictions of SOC.

 
more » « less
Award ID(s):
1802745 1802728 1724433
NSF-PAR ID:
10449959
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
35
Issue:
3
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Aluminum (Al)‐bearing and iron (Fe)‐bearing minerals, especially short‐range‐ordered (SRO) phases, are thought to protect soil organic C (SOC). However, it remains methodologically challenging to assess the influence of Al vs. Fe minerals or metal complexes. Whereas SRO Al and Fe phases share some properties, Al dissolved by oxalate (Alox) often correlates stronger with SOC than Fe dissolved by oxalate (Feox) or citrate–dithionite (Fecd). To further evaluate these relationships, we analyzed a large North American soil dataset from the National Ecological Observatory Network. A strong relationship between Aloxand SOC (and weaker Feox‐SOC relationship) persisted even after excluding soils rich in SRO minerals (Andisols and Spodosols). Al dissolved by oxalate was strongly correlated with citrate–dithionite‐extractable Al (Alcd; slope = 0.92,R2 = .69), and discrepancies could be explained (R2 = .87) by greater dissolution of Al‐substituted Fe phases by citrate–dithionite and greater dissolution of aluminosilicates by oxalate. Aluminum dissolved by oxalate and Alcdwere both strong SOC predictors despite their differing relationships with silicon (Si). Al dissolved by oxalate and Sioxstrongly covaried (R2 = .79), but Alcdwas inconsistently related to Sicd(R2 = .18). Similar relationships of Aloxand Alcdwith SOC, despite differences in minerals extracted by oxalate and citrate–dithionite, suggest that Al‐OC complexes (as opposed to aluminosilicate or iron‐bearing minerals) were the best SOC predictor. This raises important questions: do Al‐OC complexes indicate protection from decomposition or simply reflect greater intensity of mineral weathering by organic acids; and, if the latter, then perhaps SOC input is driving Aloxand SOC correlations rather than Al phase composition or abundance.

     
    more » « less
  2. null (Ed.)
    Abstract Variation in soil organic C (%OC) concentration has been associated with the concentration of reactive Fe- and Al-oxyhydroxide phases and exchangeable Ca, with the relative importance of these two stabilizing components shifting as soil pH moves from acid to alkaline. However, it is currently unknown if this pattern is similar or different with regard to measures of soil C persistence. We sampled soils from 3 horizons (uppermost A, uppermost B, C or lowest B horizons) across a pH gradient of 11 grass-dominated and 13 deciduous/mixed forest-dominated NEON sites to examine similarities and differences in the drivers of C concentration and persistence. Variation in C concentrations in all soils could be linked to abundances of Fe, Al and Ca, but were not significantly linked to variation in soil C persistence. Though pH was related to variation in Δ 14 OC, higher persistence was associated with more alkaline pH values. In forested soils, depth explained 75% of the variation in Δ 14 OC ( p  < 0.0001), with no significant additional correlations with extractable metal phases. In grasslands, soil organic C persistence was not associated with exchangeable Ca concentrations, but instead was explained by depth and inorganic C concentrations (R 2  = 0.76, p  < 0.0001), implying stabilization of organic C through association with carbonate precipitation. In grasslands, measures of substrate quality suggested greater persistence is also associated with a more advanced degree of decomposition. Results suggest that explanatory variables associated with C concentrations differ from those associated with persistence, and that reactive Fe- and Al-oxyhydroxide phases may not be present in high enough concentrations in most soils to offer any significant protective capacity. These results have significant implications for our understanding of how to model the soil C cycle and may suggest previously unrecognized stabilization mechanisms associated with carbonates and forms of extractable Si. 
    more » « less
  3. Previous studies in urban desert ecosystems have reported a decline in avian diversity. Herein, we expand and improve these studies by disentangling the effect of land-use and land-cover (LULC) types (desert, riparian desert, urban, riparian urban, agriculture), vegetation greenness (normalized difference vegetation index—NDVI), climate, and their interactions on avian seasonal variation abundance and richness. Avian community data were collected seasonally (winter and spring) from 2001 to 2016. We used generalized linear mixed models (GLMM) and multimodel inference to investigate how environmental predictors explain patterns of avian richness and abundance. Avian abundance and richness oscillated considerably among the years. GLMM indicated that LULC was the most important predictor of avian abundance and richness. Avian abundance was highest in urban riparian and urban LULC types, followed by agriculture. In contrast, avian richness was the highest in riparian environments (urban and desert), followed by agriculture, urban, and desert. NDVI was also strongly related to avian abundance and richness, whereas the effect of temperature and precipitation was moderate. The importance of environmental predictors is, however, dependent on LULC. The importance of LULC, vegetation cover, and climate in influencing the seasonal patterns of avian distribution highlights birds’ sensitivity to changes in land use and cover and temperature. 
    more » « less
  4. Abstract

    The storage and cycling of soil organic carbon (SOC) are governed by multiple co-varying factors, including climate, plant productivity, edaphic properties, and disturbance history. Yet, it remains unclear which of these factors are the dominant predictors of observed SOC stocks, globally and within biomes, and how the role of these predictors varies between observations and process-based models. Here we use global observations and an ensemble of soil biogeochemical models to quantify the emergent importance of key state factors – namely, mean annual temperature, net primary productivity, and soil mineralogy – in explaining biome- to global-scale variation in SOC stocks. We use a machine-learning approach to disentangle the role of covariates and elucidate individual relationships with SOC, without imposing expected relationshipsa priori. While we observe qualitatively similar relationships between SOC and covariates in observations and models, the magnitude and degree of non-linearity vary substantially among the models and observations. Models appear to overemphasize the importance of temperature and primary productivity (especially in forests and herbaceous biomes, respectively), while observations suggest a greater relative importance of soil minerals. This mismatch is also evident globally. However, we observe agreement between observations and model outputs in select individual biomes – namely, temperate deciduous forests and grasslands, which both show stronger relationships of SOC stocks with temperature and productivity, respectively. This approach highlights biomes with the largest uncertainty and mismatch with observations for targeted model improvements. Understanding the role of dominant SOC controls, and the discrepancies between models and observations, globally and across biomes, is essential for improving and validating process representations in soil and ecosystem models for projections under novel future conditions.

     
    more » « less
  5. Abstract

    The 2018, subaerial eruption of Kīlauea volcano, Hawaii, resulted in a 5‐km‐long stretch of coastline that actively drained lava into the ocean. Nutrients were added to the surrounding ocean through the dissolution of basaltic rock and thermal upwelling of deep water, thereby fueling a large phytoplankton bloom. Lava‐impacted, surface seawater had high suspended particle loads, and concentrations of chlorophyll, silicic acid, phosphate (Pi), nitrate, and iron that were elevated up to 12, 36, 5, 960, and 1,400 times, respectively, above the background oligotrophic levels. Widespread precipitation of iron oxyhydroxides (Feox) led to extensive scavenging of the dissolved Pipool, similar to what occurs along mid‐ocean ridge hydrothermal systems. This scavenging transformed a “fertilization” event into a Pisink near the coast of the ocean entry; however, nutrient data from outside the bloom suggest that Picould also desorb from the Feoxas it is dispersed into the open ocean. From lava quench experiments, we estimate that the hydration state of the Feoxprecipitate (H2O/Fe) was 5.2–5.7, and that the equilibrium partition coefficient of Piinto Feox(solid/liquid) was 106. In addition,33Piradiotracer incubations were used to differentiate between biotic and abiotic uptake of Piat Kīlauea's ocean entry. These findings are important for understanding modern‐day volcanic fertilization events, modeling nutrient dynamics during major events in Earth history (such as oxygenation of the atmosphere and the formation of large igneous provinces), and predicting the marine response to greater continental weathering in a warming climate.

     
    more » « less