skip to main content


Title: Development and migration of the zebrafish rhombencephalic octavolateral efferent neurons
Abstract

In vertebrate animals, motor and sensory efferent neurons carry information from the central nervous system (CNS) to peripheral targets. These two types of efferent systems sometimes bear a close resemblance, sharing common segmental organization, axon pathways, and chemical messengers. Here, we focus on the development of the octavolateral efferent neurons (OENs) and their interactions with the closely‐related facial branchiomotor neurons (FBMNs) in zebrafish. Using live‐imaging approaches, we investigate the birth, migration, and projection patterns of OENs. We find that OENs are born in two distinct groups: a group of rostral efferent neurons (RENs) that arises in the fourth segment, or rhombomere (r4), of the hindbrain and a group of caudal efferent neurons (CENs) that arises in r5. Both RENs and CENs then migrate posteriorly through the hindbrain between 18 and 48 hrs postfertilization, alongside the r4‐derived FBMNs. Like the FBMNs, migration of the r4‐derived RENs depends on function of the segmental identity genehoxb1a; unlike the FBMNs, however, both OEN populations move independently ofprickle1b. Further, we investigate whether the previously described “pioneer” neuron that leads FBMN migration through the hindbrain is an r4‐derived FBMN/REN or an r5‐derived CEN. Our experiments verify that the pioneer is an r4‐derived neuron and reaffirm its role in leading FBMN migration across the r4/5 border. In contrast, the r5‐derived CENs migrate independently of the pioneer. Together, these results indicate that the mechanisms OENs use to navigate the hindbrain differ significantly from those employed by FBMNs.

 
more » « less
NSF-PAR ID:
10450011
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Comparative Neurology
Volume:
529
Issue:
7
ISSN:
0021-9967
Page Range / eLocation ID:
p. 1293-1307
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Dopamine (DA) is a conserved modulator of vertebrate neural circuitry, yet our knowledge of its role in peripheral auditory processing is limited to mammals. The present study combines immunohistochemistry, neural tract tracing, and electron microscopy to investigate the origin and synaptic characteristics of DA fibers innervating the inner ear and the hindbrain auditory efferent nucleus in the plainfin midshipman, a vocal fish that relies upon the detection of mate calls for reproductive success. We identify a DA cell group in the diencephalon as a common source for innervation of both the hindbrain auditory efferent nucleus and saccule, the main hearing endorgan of the inner ear. We show that DA terminals in the saccule contain vesicles but transmitter release appears paracrine in nature, due to the apparent lack of synaptic contacts. In contrast, in the hindbrain, DA terminals form traditional synaptic contacts with auditory efferent neuronal cell bodies and dendrites, as well as unlabeled axon terminals, which, in turn, form inhibitory‐like synapses on auditory efferent somata. Our results suggest a distinct functional role for brain‐derived DA in the direct and indirect modulation of the peripheral auditory system of a vocal nonmammalian vertebrate.

     
    more » « less
  2. Animals can evolve dramatic sensory functions in response to environmental constraints, but little is known about the neural mechanisms underlying these changes. The Mexican tetra, Astyanax mexicanus , is a leading model to study genetic, behavioral, and physiological evolution by comparing eyed surface populations and blind cave populations. We compared neurophysiological responses of posterior lateral line afferent neurons and motor neurons across A. mexicanus populations to reveal how shifts in sensory function may shape behavioral diversity. These studies indicate differences in intrinsic afferent signaling and gain control across populations. Elevated endogenous afferent activity identified a lower response threshold in the lateral line of blind cavefish relative to surface fish leading to increased evoked potentials during hair cell deflection in cavefish. We next measured the effect of inhibitory corollary discharges from hindbrain efferent neurons onto afferents during locomotion. We discovered that three independently derived cavefish populations have evolved persistent afferent activity during locomotion, suggesting for the first time that partial loss of function in the efferent system can be an evolutionary mechanism for neural adaptation of a vertebrate sensory system. 
    more » « less
  3. Abstract

    Resource recovery and prevention of environmental pollution are key goals for sustainable development. It is widely reported that agro-industrial activities are responsible for the discharge of billions of liters of wastewater to the environment. Anaerobic digestion of these energy rich agro-industrial wastewaters can simultaneously mitigate environmental pollution and recover embedded energy as methane gas. In this study, an assessment of mono- and co-digestion of cheese whey wastewater (CWW) and poultry slaughterhouse wastewater (PSW) was conducted in 2.25-L lab-scale anaerobic digesters. Treatment combinations evaluated included CWW (R1), PSW (R2), 75:25 CWW:PSW (R3), 25:75 CWW:PSW (R4), and 50:50 CWW:PSW (R5). The digestion efficiencies of the mixed wastewaters were compared to the weighted efficiencies of the corresponding combined mono-digested samples. R4, with a mixture of 25% CWW and 75% PSW, achieved the greatest treatment efficiency. This corresponded with an average biodegradability of 84%, which was greater than for R1 and R2 at 68.5 and 71.9%, respectively. Similarly, R4 produced the highest average cumulative methane value compared to R1 and R2 at 1.22× and 1.39× for similar COD loading, respectively. The modified Gompertz model provided the best fit for the obtained methane production data, with lag time decreasing over progressive treatment cycles. PCoA and heatmap analysis of relative microbial abundances indicated a divergence of microbial communities based on feed type over the treatment cycles. Microbial community analysis showed that genusPetrimonasattained the highest relative abundance (RA) at up to 38.9% in the first two cycles, then subsequently decreased to near 0% for all reactors.Syntrophomonaswas highly abundant in PSW reactors, reaching up to 36% RA.Acinetobacterwas present mostly in CWW reactors with a RA reaching 56.5%. The methanogenic community was dominated byMethanothrix(84.3–99.9% of archaea). The presence of phosphate andAcinetobacterin CWW feed appeared to reduce the treatment efficiency of associated reactors. DespiteAcinetobacterbeing strictly aerobic, previous and current results indicate its survival under anaerobic conditions, with the storage of phosphate likely playing a key role in its ability to scavenge acetate during the digestion process.

     
    more » « less
  4. Abstract

    Vocalization is a common means of communication across vertebrates, but the evolutionary origins of the neural circuits controlling these behaviors are not clear. Peripheral mechanisms of sound production vary widely: fish produce sounds with a swimbladder or pectoral fins; amphibians, reptiles, and mammalians vocalize using a larynx; birds vocalize with a syrinx. Despite the diversity of vocal effectors across taxa, there are many similarities in the neural circuits underlying the control of these organs. Do similarities in vocal circuit structure and function indicate that vocal behaviors first arose in a single common ancestor, or have similar neural circuits arisen independently multiple times during evolution? In this review, we describe the hindbrain circuits that are involved in vocal production across vertebrates. Given that vocalization depends on respiration in most tetrapods, it is not surprising that vocal and respiratory hindbrain circuits across distantly related species are anatomically intermingled and functionally linked. Such vocal‐respiratory circuit integration supports the hypothesis that vocal evolution involved the expansion and functional diversification of breathing circuits. Recent phylogenetic analyses, however, suggest vocal behaviors arose independently in all major tetrapod clades, indicating that similarities in vocal control circuits are the result of repeated co‐options of respiratory circuits in each lineage. It is currently unknown whether vocal circuits across taxa are made up of homologous neurons, or whether vocal neurons in each lineage arose from developmentally and evolutionarily distinct progenitors. Integrative comparative studies of vocal neurons across brain regions and taxa will be required to distinguish between these two scenarios.

     
    more » « less
  5. The Pearson correlation coefficient squared,r2, is an important tool used in the analysis of neural data to quantify the similarity between neural tuning curves. Yet this metric is biased by trial-to-trial variability; as trial-to-trial variability increases, measured correlation decreases. Major lines of research are confounded by this bias, including those involving the study of invariance of neural tuning across conditions and the analysis of the similarity of tuning across neurons. To address this, we extend an estimator,r̂ER2, that was recently developed for estimating model-to-neuron correlation, in which a noisy signal is compared with a noise-free prediction, to the case of neuron-to-neuron correlation, in which two noisy signals are compared with each other. We compare the performance of our novel estimator to a prior method developed by Spearman, commonly used in other fields but widely overlooked in neuroscience, and find that our method has less bias. We then apply our estimator to demonstrate how it avoids drastic confounds introduced by trial-to-trial variability using data collected in two prior studies (macaque, both sexes) that examined two different forms of invariance in the neural encoding of visual inputs—translation invariance and fill-outline invariance. Our results quantify for the first time the gradual falloff with spatial offset of translation-invariant shape selectivity within visual cortical neuronal receptive fields and offer a principled method to compare invariance in noisy biological systems to that in noise-free models.

    SIGNIFICANCE STATEMENTQuantifying the similarity between two sets of averaged neural responses is fundamental to the analysis of neural data. A ubiquitous metric of similarity, the correlation coefficient, is attenuated by trial-to-trial variability that arises from many irrelevant factors. Spearman recognized this problem and proposed corrected methods that have been extended over a century. We show this method has large asymptotic biases that can be overcome using a novel estimator. Despite the frequent use of the correlation coefficient in neuroscience, consensus on how to address this fundamental statistical issue has not been reached. We provide an accurate estimator of the correlation coefficient and apply it to gain insight into visual invariance.

     
    more » « less