skip to main content


Title: Dispersion of Droplet Size Distributions in Supercooled Non‐precipitating Stratocumulus from Aircraft Observations Obtained during the Southern Ocean Cloud Radiation Aerosol Transport Experimental Study
Abstract

The characteristics of cloud droplet size distributions and statistical relations of the relative dispersion (ε) with the vertical velocity (w) and with the interstitial aerosol concentration (Nia) are investigated for ubiquitous supercooled shallow stratocumulus observed over the Southern Ocean (SO) using aircraft measurements obtained during the Southern Ocean Cloud Radiation Aerosol Transport Experimental Study. Distinct vertical variations have been found using 36 non‐precipitating cloud profiles. The cloud droplet effective radius (re) increases nearly monotonically from 5.3 ± 1.9 μm at cloud base to 9.4 ± 2.2 μm at cloud top. Theεdecreases rapidly from cloud base (0.42 ± 0.13) and then remains relatively constant in the upper cloud layer (0.27 ± 0.09). This study also shows robust dependence ofεon bothNiaandw. Theεincreases (decreases) with increasingNia(w) at a 95% confidence level when values ofw(lowNia) are restricted to a small range. The important roles of aerosols and dynamics onεare demonstrated and are crucial to estimating aerosol indirect radiative forcing, especially for pristine SO regions where models almost universally underestimate reflected radiation.

 
more » « less
Award ID(s):
1762096
NSF-PAR ID:
10450089
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
126
Issue:
6
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Climate and numerical weather prediction models struggle to accurately predict radiative forcing over the Southern Ocean (SO), as the amount of clouds and their phases are poorly represented in such models due to a lack of observations upon which to base parameterizations. To address this, a novel particle identification (PID) scheme, based upon airborne radar and lidar data, was applied to data collected during the Southern Ocean Clouds, Aerosol, Radiation Transport Experimental Study (SOCRATES) to assess the vertical structure of SO boundary layer clouds. A comparison between the PID scheme and in situ phase data from SOCRATES showed relatively good agreement between the two data types. The convectivity of the clouds sampled during SOCRATES was determined using the novel Echo Classification from COnvectivity for Vertically pointing radars product. The PID and in situ data were then used synergistically to identify the following features of cloud vertical structure: (a) Supercooled liquid water was very common (Probability,P∼ 80%) at cloud top for convective and stratiform clouds; (b) Supercooled large drops with maximum dimensions >95 μm frequently appear within a hundred meters below cloud top, particularly within convective clouds (MaxP35%–45%), but also within stratiform clouds (MaxP20%–30%); (c) Ice production was associated with convective activity, withP∼ 20% at cloud top, increasing to 50%–70% 200 m below top, compared toP < 30% everywhere in stratiform clouds; (d) Convective clouds were found to be more vertically heterogeneous than stratiform clouds.

     
    more » « less
  2. Abstract

    Controls on pristine aerosol over the Southern Ocean (SO) are critical for constraining the strength of global aerosol indirect forcing. Observations of summertime SO clouds and aerosols in synoptically varied conditions during the 2018 SOCRATES aircraft campaign reveal novel mechanisms influencing pristine aerosol‐cloud interactions. The SO free troposphere (3–6 km) is characterized by widespread, frequent new particle formation events contributing to much larger concentrations (≥1,000 mg−1) of condensation nuclei (diameters > 0.01 μm) than in typical sub‐tropical regions. Synoptic‐scale uplift in warm conveyor belts and sub‐polar vortices lifts marine biogenic sulfur‐containing gases to free‐tropospheric environments favorable for generating Aitken‐mode aerosol particles (0.01–0.1 μm). Free‐tropospheric Aitken particles subside into the boundary layer, where they grow in size to dominate the sulfur‐based cloud condensation nuclei (CCN) driving SO cloud droplet number concentrations (Nd ∼ 60–100 cm−3). Evidence is presented for a hypothesized Aitkenbuffering mechanism which maintains persistently high summertime SONdagainst precipitation removal through CCN replenishment from activation and growth of boundary layer Aitken particles. Nudged hindcasts from the Community Atmosphere Model (CAM6) are found to underpredict Aitken and accumulation mode aerosols andNd, impacting summertime cloud brightness and aerosol‐cloud interactions and indicating incomplete representations of aerosol mechanisms associated with ocean biology.

     
    more » « less
  3. Abstract

    Supercooled liquid water (SLW) and mixed phase clouds containing SLW and ice over the Southern Ocean (SO) are poorly represented in global climate and numerical weather prediction models. Observed SLW exists at lower temperatures than threshold values used to characterize its detrainment from convection in model parameterizations, and processes controlling its formation and removal are poorly understood. High‐resolution observations are needed to better characterize SLW over the SO. This study characterizes the frequency and spatial distribution of different cloud phases (liquid, ice, and mixed) using in situ observations acquired during the Southern Ocean Clouds, Radiation, Aerosol Transport Experiment Study. Cloud particle phase is identified using multiple cloud probes. Results show occurrence frequencies of liquid phase samples up to 70% between −20°C and 0°C and of ice phase samples up to 10% between −5°C and 0°C. Cloud phase spatial heterogeneity is determined by relating the total number of 1 s samples from a given cloud to the number of segments whose neighboring samples are the same phase. Mixed phase conditions are the most spatially heterogeneous from −20°C to 0°C, whereas liquid phase conditions from −10°C to 0°C and ice phase conditions from −20°C to −10°C are the least spatially heterogeneous. Greater spatial heterogeneity is associated with broader distributions of vertical velocity. Decreasing droplet concentrations and increasing number‐weighted mean liquid diameters occur within mixed phase clouds as the liquid water fraction decreases, possibly suggesting preferential evaporation of smaller drops during the Wegener‐Bergeron‐Findeisen process.

     
    more » « less
  4. Abstract

    The bulk microphysical properties and number distribution functions (N(D)) of supercooled liquid water (SLW) and ice inside and between ubiquitous generating cells (GCs) observed over the Southern Ocean (SO) during the Southern Ocean Clouds Radiation Aerosol Transport Experimental Study (SOCRATES) measured by in situ cloud probes onboard the NCAR/NSF G‐V aircraft are compared. SLW was detected inside all GCs with an average liquid water content of 0.31 ± 0.19 g m−3, 11% larger than values between GCs. TheN(D)of droplets (maximum dimensionD < 50 μm) inside and between GCs had only slight differences. For ice particles, on the other hand, the mean concentration (median mass diameter) withD > 200 μm inside GCs was 2.0 ± 3.3 L−1(323 ± 263 μm), 65% (37%) larger than values outside GCs. AsDincreases, the percentage differences became larger (up to ~500%). The more and larger ice particles inside GCs suggest the GC updrafts provide a favorable environment for particle growth by deposition and riming and that mixing processes are less efficient at redistributing larger particles. The horizontal scale of observed GCs ranged from 200 to 600 m with a mean of 395 ± 162 m, smaller than GC widths observed in previous studies. This study expands knowledge of the microphysical properties and processes acting in GCs over a wider range of conditions than previously available.

     
    more » « less
  5. Abstract

    The abundance and sources of ice‐nucleating particles, particles required for heterogeneous ice nucleation, are long‐standing sources of uncertainty in quantifying aerosol‐cloud interactions. In this study, we demonstrate near closure between immersion freezing ice‐nucleating particle number concentration (nINPs) observations andnINPscalculated from simulated sea spray aerosol and dust. The Community Atmospheric Model with constrained meteorology was used to simulate aerosol concentrations at the Mace Head Research Station (North Atlantic) and over the Southern Ocean to the south of Tasmania (Clouds, Aerosols, Precipitation, Radiation, and atmospherIc Composition Over the southeRN ocean campaign). Model‐predictednINPswere within a factor of 10 ofnINPsobserved with an off‐line ice spectrometer at Mace Head Research Station and Clouds, Aerosols, Precipitation, Radiation, and atmospherIc Composition Over the southeRN ocean campaign, for 93% and 69% of observations, respectively. Simulated vertical profiles ofnINPsreveal that transported dust may be critical tonINPsin remote regions and that sea spray aerosol may be the dominate contributor to primary ice nucleation in Southern Ocean low‐level mixed‐phase clouds.

     
    more » « less