skip to main content


Title: Evaluation of the moderate DI 13 C isotope enrichment method for measuring photochemical mineralization of marine dissolved organic carbon
Abstract

The moderate DI13C isotope enrichment (MoDIE) method by Powers et al. (2017) is a promising method to precisely measure the photochemical mineralization of dissolved organic carbon (DOC) in water samples without dramatically altering a sample's pH or organic carbon pool. Here, we evaluated the analytical uncertainties of the MoDIE method and used Monte Carlo simulations to optimize the experimental design for the most precise measurements of dissolved inorganic carbon (DIC) that is produced photochemically (DIC). Analytically, we recommend calculating yields of DIChvwith an exact expression of conservation of mass that intrinsically reduces error and uncertainty. Methodologically, the overall uncertainty and detection limit of the MoDIE method can be significantly reduced by partially stripping away the original DIC pool, enriching the residual DIC with more DI13C, and increasing the yields of DIChvvia longer irradiation. Instrumentally, more precise measurements of enriched δ13C values before and after irradiation are needed to further improve the precision of DICconcentration determinations. Higher precision DIChvmeasurements via the optimized MoDIE method can improve our understanding of the photochemical mineralization of DOC and thus the budget of marine DOC. The optimizations and detection limits reported here will become more refined as measurements and associated uncertainties from future MoDIE experiments become available.

 
more » « less
Award ID(s):
2023115 1536597
NSF-PAR ID:
10450102
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography: Methods
Volume:
19
Issue:
9
ISSN:
1541-5856
Page Range / eLocation ID:
p. 651-658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Dissolved inorganic carbon (DIC) and its stable carbon isotope (δ13C‐DIC) are valuable parameters for studying the aquatic carbon cycle and quantifying ocean anthropogenic carbon accumulation rates. However, the potential of this coupled pair is underexploited as only 15% or less of cruise samples have been analyzed forδ13C‐DIC because the traditional isotope analysis is labor‐intensive and restricted to onshore laboratories. Here, we improved the analytical precision and reported the protocol of an automated, efficient, and high‐precision method for ship‐based DIC andδ13C‐DIC analysis based on cavity ring‐down spectroscopy (CRDS). We also introduced a set of stable in‐house standards to ensure accurate and consistent DIC andδ13C‐DIC measurements, especially on prolonged cruises. With this method, we analyzed over 1600 discrete seawater samples over a 40‐d cruise along the North American eastern ocean margin in summer 2022, representing the first effort to collect a large dataset ofδ13C‐DIC onboard of any oceanographic expedition. We evaluated the method's uncertainty, which was 1.2 μmol kg−1for the DIC concentration and 0.03‰ for theδ13C‐DIC value (1σ). An interlaboratory comparison of onboard DIC concentration analysis revealed an average offset of 2.0 ± 3.8 μmol kg−1between CRDS and the coulometry‐based results. The cross‐validation ofδ13C‐DIC in the deep‐ocean data exhibited a mean difference of only −0.03‰ ± 0.07‰, emphasizing the consistency with historical data. Potential applications in aquatic biogeochemistry are discussed.

     
    more » « less
  2. Abstract

    We report marine dissolved organic carbon (DOC) concentrations, and DOC Δ14C and δ13C values in seawater collected from the Southern Ocean and eastern Pacific GOSHIP cruise P18 in 2016/2017. The aging of14C in DOC in circumpolar deep water northward from 69°S to 20°N was similar to that measured in dissolved inorganic carbon in the same samples, indicating that the transport of deep waters northward is the primary control of14C in DIC and DOC. Low DOC ∆14C and δ13C measurements between 1,200 and 3,400 m depth may be evidence of a source of DOC produced in nearby hydrothermal ridge systems (East Pacific Rise).

     
    more » « less
  3. Abstract

    The ocean's biological organic carbon pump regulates thepCO2of the atmosphere and helps maintain the oxygen distributions in the ocean. Global models of this flux are poorly verified with observations. We used upper‐ocean budgets of O2and the13C/12C of dissolved inorganic carbon (DIC) to estimate the biological pump in the subtropical gyres. These two tracers yield, within errors, similar result (~2.0 mol C·m−2·year−1) at three Northern Hemisphere subtropical locations. Values for three Southern Hemisphere subtropical regions are lower and more variable determined by the O2mass balance than by the DI13C method (−0.5 to 0.8 mol C·m−2·year−1and 0.9 to 1.3 mol C·m−2·year−1, respectively). Both methods suggest that the subtropical ocean is, on the whole, autotropic. The gas exchange residence times of O2and dissolved inorganic carbon result in different spatial and temporal averaging creating complementary tracers for biological pump model verification.

     
    more » « less
  4. Abstract

    The13C/12C of dissolved inorganic carbon (δ13CDIC) carries valuable information on ocean biological C‐cycling, air‐sea CO2exchange, and circulation. Paleo‐reconstructions of oceanic13C from sediment cores provide key insights into past as changes in these three drivers. As a step toward full inclusion of13C in the next generation of Earth system models, we implemented13C‐cycling in a 1° lateral resolution ocean‐ice‐biogeochemistry Geophysical Fluid Dynamics Laboratory (GFDL) model driven by Common Ocean Reference Experiment perpetual year forcing. The model improved the mean of modernδ13CDICover coarser resolution GFDL‐model implementations, capturing the Southern Ocean decline in surfaceδ13CDICthat propagates to the deep sea via deep water formation. Controls onδ13CDICof the deep‐sea are quantified using both observations and model output. The biological control is estimated from the relationship between deep‐sea Pacificδ13CDICand phosphate (PO4). Theδ13CDIC:PO4slope from observations is revised to a value of 1.01 ± 0.02‰ (μmol kg−1)−1, consistent with a carbon to phosphate ratio of organic matter (C:Porg) of 124 ± 10. Model output yields a lowerδ13CDIC:PO4than observed due to too low C:Porg. The ocean circulation impacts deep modernδ13CDICin two ways, via the relative proportion of Southern Ocean and North Atlantic deep water masses, and via the preindustrialδ13CDICof these water mass endmembers. Theδ13CDICof the endmembers ventilating the deep sea are shown to be highly sensitive to the wind speed dependence of air‐sea CO2gas exchange. Reducing the coefficient for air‐sea gas exchange following OMIP‐CMIP6 protocols improves significantly surfaceδ13CDICrelative to previous gas exchange parameterizations.

     
    more » « less
  5. Abstract

    The measured carbon isotopic compositions of carbonate sediments (δ13Ccarb) on modern platforms are commonly13C‐enriched compared to predicted values for minerals forming in isotopic equilibrium with the dissolved inorganic carbon (DIC) of modern seawater. This offset undermines the assumption that δ13Ccarbvalues of analogous facies in the rock record are an accurate archive of information about Earth's global carbon cycle. We present a new data set of the diurnal variation in carbonate chemistry and seawater δ13CDICvalues on a modern carbonate platform. These data demonstrate that δ13Ccarbvalues on modern platforms are broadly representative of seawater, but only after accounting for the recent decrease in the δ13C value of atmospheric CO2and shallow seawater DIC due to anthropogenic carbon release, a phenomenon commonly referred to as the13C Suess effect. These findings highlight an important, yet overlooked, aspect of some modern carbonate systems, which must inform their use as ancient analogs.

     
    more » « less