skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Carbon and carbon-13 in the preindustrial and glacial ocean
Despite their importance for Earth’s climate and paleoceanography, the cycles of carbon (C) and its isotope13C in the ocean are not well understood. Models typically do not decompose C and13C storage caused by different physical, biological, and chemical processes, which makes interpreting results difficult. Consequently, basic observed features, such as the decreased carbon isotopic signature (δ13CDIC) of the glacial ocean remain unexplained. Here, we review recent progress in decomposing Dissolved Inorganic Carbon (DIC) into preformed and regenerated components, extend a precise and complete decomposition to δ13CDIC, and apply it to data-constrained model simulations of the Preindustrial (PI) and Last Glacial Maximum (LGM) oceans. Regenerated components, from respired soft-tissue organic matter and dissolved biogenic calcium carbonate, are reduced in the LGM, indicating a decrease in the active part of the biological pump. Preformed components increase carbon storage and decrease δ13CDICby 0.55 ‰ in the LGM. We separate preformed into saturation and disequilibrium components, each of which have biological and physical contributions. Whereas the physical disequilibrium in the PI is negative for both DIC and δ13CDIC, and changes little between climate states, the biological disequilibrium is positive for DIC but negative for δ13CDIC, a pattern that is magnified in the LGM. The biological disequilibrium is the dominant driver of the increase in glacial ocean C and the decrease in δ13CDIC, indicating a reduced sink of biological carbon. Overall, in the LGM, biological processes increase the ocean’s DIC inventory by 355 Pg more than in the PI, reduce its mean δ13CDICby an additional 0.52 ‰, and contribute 60 ppm to the lowering of atmospheric CO2. Spatial distributions of the δ13CDICcomponents are presented. Commonly used approximations based on apparent oxygen utilization and phosphate are evaluated and shown to have large errors.  more » « less
Award ID(s):
1924215
PAR ID:
10521991
Author(s) / Creator(s):
;
Editor(s):
Carré, Matthieu
Publisher / Repository:
PLOS
Date Published:
Journal Name:
PLOS Climate
Volume:
3
Issue:
7
ISSN:
2767-3200
Page Range / eLocation ID:
e0000434
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Atlantic Meridional Overturning Circulation (AMOC) impacts temperatures, ecosystems, and the carbon cycle. However, AMOC effects on Earth's carbon cycle remains poorly understood, in part because contributions of different physical and biological mechanisms that impact carbon storage in the ocean are not typically diagnosed in climate models. Here, we explore modeled effects of AMOC shutdowns on ocean Dissolved Inorganic Carbon (DIC) by applying a new decomposition that explicitly calculates preformed and regenerated DIC components and separates physical and biological contributions. An extensive evaluation in transient simulations finds that the method is accurate, especially for basin‐wide changes, whereas errors can be significant at global and local scales. In contrast, estimates of respired carbon based on Apparent Oxygen Utilization lead to large errors and are generally not reliable. In response to a shutdown of the AMOC under Last Glacial Maximum (LGM) background climate, ocean carbon increases and then decreases, leading to opposite changes in atmospheric carbon dioxide (CO2). DIC changes are dominated by opposing changes in biological carbon storage. Whereas regenerated components increase in the Atlantic and dominate the initial increase in global ocean DIC until model year 1000, preformed components decrease in the other ocean basins and dominate the long‐term DIC decrease until year 4000. Biological disequilibrium is an important contribution to preformed carbon changes. Biological saturation carbon decreases in the Pacific, Indian, and Southern Oceans due to a decrease in surface alkalinity. The spatial patterns of the DIC components and their changes in response to an AMOC collapse are presented. 
    more » « less
  2. Abstract All else equal, if the ocean's “biological [carbon] pump” strengthens, the dissolved oxygen (O2) content of the ocean interior declines. Confidence is now high that the ocean interior as a whole contained less oxygen during the ice ages. This is strong evidence that the ocean's biological pump stored more carbon in the ocean interior during the ice ages, providing the core of an explanation for the lower atmospheric carbon dioxide (CO2) concentrations of the ice ages. Vollmer et al. (2022,https://doi.org/10.1029/2021PA004339) combine proxies for the oxygen and nutrient content of bottom waters to show that the ocean nutrient reservoir was more completely harnessed by the biological pump during the Last Glacial Maximum, with an increase in the proportion of dissolved nutrients in the ocean interior that were “regenerated” (transported as sinking organic matter from the ocean surface to the interior) rather than “preformed” (transported to the interior as dissolved nutrients by ocean circulation). This points to changes in the Southern Ocean, the dominant source of preformed nutrients in the modern ocean, with an apparent additional contribution from a decline in the preformed nutrient content of North Atlantic‐formed interior water. Vollmer et al. also find a lack of LGM‐to‐Holocene difference in the preformed13C/12C ratio of dissolved inorganic carbon. This finding may allow future studies to resolve which of the proposed Southern Ocean mechanisms was most responsible for enhanced ocean CO2storage during the ice ages: (a) coupled changes in ocean circulation and biological productivity, or (b) physical limitations on air‐sea gas exchange. 
    more » « less
  3. Abstract The prevailing hypothesis to explain pCO2rise at the last glacial termination calls upon enhanced ventilation of excess respired carbon that accumulated in the deep sea during the glacial. Recent studies argue lower [O2] in the glacial ocean is indicative of increased carbon respiration. The magnitude of [O2] depletion was 100–140 µ mol/kg at the glacial maximum. Because respiration is coupled toδ13C of dissolved inorganic carbon (DIC), [O2] depletion of 100–140 µ mol/kg from carbon respiration would lower deep waterδ13CDICby ∼1‰ relative to surface water. Prolonged sequestration of respired carbon would also lower the amount of14C in the deep sea. We show that Pacific Deep Waterδ13CDICdid not decrease relative to the surface ocean and Δ14C was only ∼50‰ lower during the late glacial. Model simulations of the hypothesized ventilation change during deglaciation lead to large increases inδ13CDIC, Δ14C, andε14C that are not recorded in observations. 
    more » « less
  4. Abstract Changes in the Atlantic Meridional Overturning Circulation (AMOC) are believed to have affected the cycling of carbon isotopes in both the ocean and the atmosphere. However, understanding how AMOC changes of Dissolved Inorganic Carbon (DIC) distributions in the ocean is limited, since models do not typically decompose the various processes that affect . Here, a new decomposition is applied to idealized simulations of an AMOC collapse, both for glacial and preindustrial conditions. The decomposition explicitly calculates the preformed and regenerated components of and separates between physical and biological effects. An AMOC collapse leads to a large and rapid decrease in in the North Atlantic, which is due to, in about equal parts, accumulation of remineralized organic matter and changes in preformed , both in glacial and preindustrial simulations. In the Pacific, Indian, and Southern Oceans increases by a smaller magnitude. This increase is dominated by changes in preformed in the glacial simulation and remineralized in the preindustrial simulation. An extensive evaluation of the decomposition shows that its errors are small in most cases, especially for large basin‐wide changes, whereas for small, local or global changes errors can be substantial. In contrast, approximations of the remineralized component based on Apparent Oxygen Utilization have large errors in most cases and are generally unreliable because they include contributions from oxygen disequilibrium. 
    more » « less
  5. Abstract The southeastern Atlantic Ocean is a crucial yet understudied region for the ocean absorption of anthropogenic carbon (Canth). Data from the A12 (2020) and A13.5 (2010) cruises offer an opportunity to examine changes in dissolved inorganic carbon (DIC), its stable isotope (δ13C), and Canthover the past decade within a limited region (1∼3°E, 32∼42°S). For the decade of 2010–2020, Canthinvasion was observed from the sea surface down to 1,200 m based on both DIC and δ13C data. The mean Canthincrease rate (1.08 ± 0.26 mol m−2 yr−1) during this period accelerated from 0.87 ± 0.05 mol m−2 yr−1during the previous period (1983/84–2010). The δ13C‐based Canthincrease closely matches the DIC‐based estimation below 500 m but is 26% higher in the upper ocean. This discrepancy is likely due to δ13C's longer air‐sea exchange timescale, seasonal variability in the upper ocean, and the chosen ratio of anthropogenically induced changes in δ13C and DIC. Finally, column inventory changes based on the two methods also exhibit very similar mean Canthuptake rates. The paired DIC concentration and stable isotope dataset may enhance our ability to constrain Canthaccumulation and its controlling mechanisms in the ocean. 
    more » « less