Coastal agricultural zones are experiencing salinization due to accelerating rates of sea-level rise, causing reduction in crop yields and abandonment of farmland. Understanding mechanisms and drivers of this seawater intrusion (SWI) is key to mitigating its effects and predicting future vulnerability of groundwater resources to salinization. We implemented a monitoring network of pressure and specific conductivity (SC) sensors in wells and surface waters to target marsh-adjacent agricultural areas in greater Dover, Delaware. Recorded water levels and SC over a period of three years show that the mechanisms and timescales of SWI are controlled by local hydrology, geomorphology, and geology. Monitored wells did not indicate widespread salinization of deep groundwater in the surficial aquifer. However, monitored surface water bodies and shallow (<4m deep) wells did show SC fluctuations due to tides and storm events, in one case leading to salinization of deeper (18m deep) groundwater. Seasonal peaks in SC occurred during late summer months. Seasonal and interannual variation of SC was also influenced by relative sea level. The data collected in this study data highlight the mechanisms by which surface water-groundwater connections lead to salinization of aquifers inland, before SWI is detected in deeper groundwater nearer the coastline. Sharing of our data with stakeholders has led to the implementation of SWI mitigation efforts, illustrating the importance of strategic monitoring and stakeholder engagement to support coastal resilience.
more »
« less
Effects of Marsh Migration on Flooding, Saltwater Intrusion, and Crop Yield in Coastal Agricultural Land Subject to Storm Surge Inundation
Abstract Low‐lying coastlines are vulnerable to sea‐level rise and storm surge salinization, threatening the sustainability of coastal farmland. Most crops are intolerant of salinity, and minimization of saltwater intrusion is critical to crop preservation. Coastal wetlands provide numerous ecosystem services, including attenuation of storm surges. However, most research studying coastal protection by marshes neglects consideration of subsurface salinization. Here, we use two‐dimensional, variable‐density, coupled surface‐subsurface hydrological models to explore how coastal wetlands affect surface and subsurface salinization due to storm surges. We evaluate how marsh width, surge height, and upland slope impact the magnitude of saltwater intrusion and the effect of marsh migration into farmland on crop yield. Results suggest that along topographically low coastlines subject to storm surges, marsh migration into agricultural fields prolongs the use of fields landward of the marsh while also protecting groundwater quality. Under a storm surge height of 3.0 m above mean sea level or higher and terrestrial slope of 0.1%, marsh migration of 200 and 400 m protects agricultural yield landward of the marsh‐farmland interface compared to scenarios without migration, despite the loss of arable land. Economic calculations show that the maintained yields with 200 m of marsh migration may benefit farmers financially. However, yields are not maintained with migration widths over 400 m or surge height under 3.0 m above mean sea level. Results highlight the environmental and economic benefits of marsh migration and the need for more robust compensation programs for landowners incorporating coastal wetland development as a management strategy.
more »
« less
- Award ID(s):
- 1759879
- PAR ID:
- 10450178
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 57
- Issue:
- 2
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Coastal wetlands play a vital role in the global carbon cycle and are under pressure from multiple anthropogenic influences. Altered hydrology and land use change increase susceptibility of wetlands to sea‐level rise, saltwater intrusion, tidal flood events, and storm surges. Flooding from perigean spring tides and storm surges rapidly inundates coastal wetlands with saline waters, quickly surpassing vegetation tolerances, leading to shifts in soil microbial respiration, peat collapse, and plant mortality, followed by establishment of salt‐tolerant vegetation. The Southeast Saline Everglades (SESE) is facing many of these pressures, making it a model system to examine the impacts of ecosystem state transitions and their carbon dynamics. Saltwater flooding from Hurricane Irma (2017) initiated a transitional state, where less salt‐tolerant vegetation (e.g.,Cladium jamaicense) is declining, allowing halophytic species such asRhizophora mangleto colonize, altering the ecosystem's biogeochemistry. We utilized eddy covariance techniques in the SESE to measure ecosystem fluxes of CO2and CH4in an area that is transitioning to an alternative state. The landward expansion of mangroves is increasing leaf area, leading to greater physiological activity and higher biomass. Our site was presented initially as a small C source (47.0 g C m−2) in 2020, and by 2022 was a sink (−84.24 g C m−2), with annual greenhouse carbon balance ranging from −0.04 to 0.18. Net radiative forcing ranged from 2.04 to 2.27 W m−2 d−1. As the mangrove landward margin expands, this may lead the area to become a greater carbon sink and a potential offset to increasing atmospheric CO2concentrations.more » « less
-
ABSTRACT Sea level rise and storm surges affect coastal forests along low‐lying shorelines. Salinization and flooding kill trees and favour the encroachment of salt‐tolerant marsh vegetation. The hydrology of this ecological transition is complex and requires a multidisciplinary approach. Sea level rise (press) and storms (pulses) act on different timescales, affecting the forest vegetation in different ways. Salinization can occur either by vertical infiltration during flooding or from the aquifer driven by tides and sea level rise. Here, we detail the ecohydrological processes acting in the critical zone of retreating coastal forests. An increase in sea level has a three‐pronged effect on flooding and salinization: It raises the maximum elevation of storm surges, shifts the freshwater‐saltwater interface inland, and elevates the water table, leading to surface flooding from below. Trees can modify their root systems and local soil hydrology to better withstand salinization. Hydrological stress from intermittent storm surges inhibits tree growth, as evidenced by tree ring analysis. Tree rings also reveal a lag between the time when tree growth significantly slows and when the tree ultimately dies. Tree dieback reduces transpiration, retaining more water in the soil and creating conditions more favourable for flooding. Sedimentation from storm waters combined to organic matter decomposition can change the landscape, affecting flooding and runoff. Our results indicate that only a multidisciplinary approach can fully capture the ecohydrology of retreating forests in a period of accelerated sea level rise.more » « less
-
Abstract Saltwater intrusion is the leading edge of sea-level rise, preceding tidal inundation, but leaving its salty signature far inland. With climate change, saltwater is shifting landward into regions that previously have not experienced or adapted to salinity, leading to novel transitions in biogeochemistry, ecology, and human land uses. We explore these changes and their implications for climate adaptation in coastal ecosystems. Biogeochemical changes, including increases in ionic strength, sulfidation, and alkalinization, have cascading ecological consequences such as upland forest retreat, conversion of freshwater wetlands, nutrient mobilization, and declines in agricultural productivity. We explore the trade-offs among land management decisions in response to these changes and how public policy should shape socioecological transitions in the coastal zone. Understanding transitions resulting from saltwater intrusion—and how to manage them—is vital for promoting coastal resilience.more » « less
-
The capacity of coastal wetlands to stabilize shorelines and reduce erosion is a critical ecosystem service, and it is uncertain how changes in dominant vegetation may affect coastal protection. As part of a long-term study (2012–present) comparing ecosystem functions of marsh and black mangrove vegetation, we have experimentally maintained marsh and black mangrove patches (3 m × 3 m) along a plot-level (24 m × 42 m) gradient of marsh and mangrove cover in coastal wetlands near Port Aransas, TX. In August 2017, this experiment was directly in the path of Hurricane Harvey, a category 4 storm. This extreme disturbance event provided an opportunity to quantify differences in resistance between mangrove and marsh vegetation and to assess which vegetation type provided better shoreline protection against storm-driven erosion. We compared changes in plant cover, shoreline erosion, and accreted soil depth to values measured prior to storm landfall. Relative mangrove cover decreased 25–40% after the storm, regardless of initial cover, largely due to damage on taller mangroves (> 2.5 m height) that were not fully inundated by storm surge and were therefore exposed to strong winds. Evidence of regrowth on damaged mangrove branches was apparent within 2 months of landfall. Hurricane-induced decreases in mangrove cover were partially ameliorated by the presence of neighboring mangroves, particularly closer to the shoreline. Marsh plants were generally resistant to hurricane effects. Shoreline erosion exceeded 5 m where mangroves were absent (100% marsh cover) but was relatively modest (< 0.5 m) in plots with mangroves present (11–100% mangrove cover). Storm-driven accreted soil depth was variable but more than 2× higher in marsh patches than in mangrove patches. In general, mangroves provided shoreline protection from erosion but were also more damaged by wind and surge, which may reduce their shoreline protection capacity over longer time scales.more » « less
An official website of the United States government
