skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Striped Jets in Post–Neutron Star Merger Systems
Abstract Models invoking magnetic reconnection as the particle acceleration mechanism within relativistic jets often adopt a gradual energy dissipation profile within the jet. However, such a profile has yet to be reproduced in first-principles simulations. Here we perform a suite of 3D general relativistic magnetohydrodynamic simulations of post–neutron star merger disks with an initially purely toroidal magnetic field. We explore the variations in both the microphysics (e.g., nuclear recombination, neutrino emission) and system parameters (e.g, disk mass). In all of our simulations, we find the formation of magnetically striped jets. The stripes result from the reversals in the poloidal magnetic flux polarity generated in the accretion disk. The simulations display large variations in the distributions of stripe duration, τ , and power, 〈 P Φ 〉. We find that more massive disks produce more powerful stripes, the most powerful of which reaches 〈 P Φ 〉 ∼ 10 49 erg s −1 at τ ∼ 20 ms. The power and variability that result from the magnetic reconnection of the stripes agree with those inferred in short-duration gamma-ray bursts. We find that the dissipation profile of the cumulative energy is roughly a power law in both radial distance, z , and τ , with a slope in the range of ∼1.7–3; more massive disks display larger slopes.  more » « less
Award ID(s):
2107802 2107806 2107839
PAR ID:
10450264
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
954
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
40
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Relativistic jets from supermassive black holes are among the most powerful and luminous astrophysical systems in Universe. We propose that the open magnetic field lines through the black hole, which drive a strongly magnetized jet, may have their polarity reversing over time scales related to the growth of the magnetorotational dynamo in the disc, resulting in dissipative structures in the jet characterized by reversing toroidal field polarities, referred to as ‘stripes’. The magnetic reconnection between the stripes dissipates the magnetic energy and powers jet acceleration. The striped jet model can explain the jet acceleration, large-scale jet emission, and blazar emission signatures consistently in a unified physical picture. Specifically, we find that the jet accelerates to the bulk Lorentz factor Γ ≳ 10 within 1-parsec distance from the central engine. The acceleration slows down but continues at larger distances, with intrinsic acceleration rate $$\dot{\Gamma }/\Gamma$$ between $0.0005$ and $$0.005~\rm {yr^{-1}}$$ at tens of parsecs, which is in very good agreement with recent radio observations. Magnetic reconnection continuously accelerates non-thermal particles over large distances from the central engine, resulting in the core-shift effect and overall flat-to-inverted synchrotron spectrum. The large-scale spectral luminosity peak νpeak is antiproportional to the location of the peak of the dissipation, which is set by the minimal stripe width lmin. The blazar zone is approximately at the same location. At this distance, the jet is moderately magnetized, with the comoving magnetic field strength and dissipation power consistent with typical leptonic blazar model parameters. 
    more » « less
  2. Abstract Relativistic jets from a Kerr black hole (BH) following the core collapse of a massive star (“collapsar”) is a leading model for gamma-ray bursts (GRBs). However, the two key ingredients for a Blandford–Znajek-powered jet—rapid rotation and a strong magnetic field—seem mutually exclusive. Strong fields in the progenitor star’s core transport angular momentum outward more quickly, slowing down the core before collapse. Through innovative multidisciplinary modeling, we first use MESA stellar evolution models followed to core collapse to explicitly show that the small length scale of the instabilities—likely responsible for angular momentum transport in the core (e.g., Tayler–Spruit)—results in a lownetmagnetic flux fed to the BH horizon, far too small to power GRB jets. Instead, we propose a novel scenario in which collapsar BHs acquire their magnetic “hair” from their progenitor proto–neutron star (PNS), which is likely highly magnetized from an internal dynamo. We evaluate the conditions for the BH accretion disk to pin the PNS magnetosphere to its horizon immediately after the collapse. Our results show that the PNS spin-down energy released before collapse matches the kinetic energy of Type Ic-BL supernovae, while the nascent BH’s spin and magnetic flux produce jets consistent with observed GRB characteristics. We map our MESA models to 3D general-relativistic magnetohydrodynamic simulations and confirm that accretion disks confine the strong magnetic flux initiated near a rotating BH, enabling the launch of successful GRB jets, whereas a slower-spinning BH or one without a disk fails to do so. 
    more » « less
  3. Abstract It is commonly believed that blazar jets are relativistic magnetized plasma outflows from supermassive black holes. One key question is how the jets dissipate magnetic energy to accelerate particles and drive powerful multiwavelength flares. Relativistic magnetic reconnection has been proposed as the primary plasma physical process in the blazar emission region. Recent numerical simulations have shown strong acceleration of nonthermal particles that may lead to multiwavelength flares. Nevertheless, previous works have not directly evaluated γ -ray signatures from first-principles simulations. In this paper, we employ combined particle-in-cell and polarized radiation transfer simulations to study multiwavelength radiation and optical polarization signatures under the leptonic scenario from relativistic magnetic reconnection. We find harder-when-brighter trends in optical and Fermi-LAT γ -ray bands as well as closely correlated optical and γ -ray flares. The swings in optical polarization angle are also accompanied by γ -ray flares with trivial time delays. Intriguingly, we find highly variable synchrotron self-Compton signatures due to inhomogeneous particle distributions during plasmoid mergers. This feature may result in fast γ -ray flares or orphan γ -ray flares under the leptonic scenario, complementary to the frequently considered minijet scenario. It may also imply neutrino emission with low secondary synchrotron flux under the hadronic scenario, if plasmoid mergers can accelerate protons to very high energy. 
    more » « less
  4. Supermassive binary black holes in galactic centers are potential multimessenger sources in gravitational waves and electromagnetic radiation. To find such objects, isolating unique electromagnetic signatures of their accretion flow is key. With the aid of three-dimensional general-relativistic magnetohydrodynamic simulations that utilize an approximate, semianalytic, superimposed spacetime metric, we identify two such signatures for merging binaries. Both involve magnetic reconnection and are analogous to plasma processes observed in the solar corona. The first, like colliding flux tubes that can cause solar flares, involves colliding jets that form an extended reconnection layer, dissipating magnetic energy and causing the two jets to merge. The second, akin to coronal mass ejection events, involves the accretion of magnetic field lines onto both black holes; these magnetic fields then twist, inflate, and form a trailing current sheet, ultimately reconnecting and driving a hot outflow. We provide estimates for the associated electromagnetic emission for both processes, showing that they likely accelerate electrons to high energies and are promising candidates for continuous, stochastic, and/or quasi-periodic higher-energy electromagnetic emission. We also show that the accretion flows around each black hole can display features associated with the magnetically arrested state. However, simulations with black hole spins misaligned with the orbital plane and simulations with larger Bondi radii saturate at lower values of horizon-penetrating magnetic flux than standard magnetically arrested disks, leading to weaker, intermittent jets owing to feedback from the weak jets or equatorial flux tubes ejected by reconnecting field lines near the horizon. 
    more » « less
  5. Abstract We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger tor≳ 1011cm. The disk that forms after a merger of mass ratioq= 2 ejects massive disk winds (3–5 × 10−2M). We introduce various postmerger magnetic configurations and find that initial poloidal fields lead to jet launching shortly after the merger. The jet maintains a constant power due to the constancy of the large-scale BH magnetic flux until the disk becomes magnetically arrested (MAD), where the jet power falls off asLj∼t−2. All jets inevitably exhibit either excessive luminosity due to rapid MAD activation when the accretion rate is high or excessive duration due to delayed MAD activation compared to typical short gamma-ray bursts (sGRBs). This provides a natural explanation for long sGRBs such as GRB 211211A but also raises a fundamental challenge to our understanding of jet formation in binary mergers. One possible implication is the necessity of higher binary mass ratios or moderate BH spins to launch typical sGRB jets. For postmerger disks with a toroidal magnetic field, dynamo processes delay jet launching such that the jets break out of the disk winds after several seconds. We show for the first time that sGRB jets with initial magnetizationσ0> 100 retain significant magnetization (σ≫ 1) atr> 1010cm, emphasizing the importance of magnetic processes in the prompt emission. The jet–wind interaction leads to a power-law angular energy distribution by inflating an energetic cocoon whose emission is studied in a companion paper. 
    more » « less