skip to main content


This content will become publicly available on July 25, 2024

Title: Power-Efficient LFP-Adaptive Dynamic Zoom-and-Track Incremental ΔΣ Front-End for Dual-Band Subcortical Recordings
We report a power-efficient analog front-end integrated circuit (IC) for multi-channel, dual-band subcortical recordings. In order to achieve high-resolution multi-channel recordings with low power consumption, we implemented an incremental ΔΣ ADC (IADC) with a dynamic zoom-and-track scheme. This scheme continuously tracks local field potential (LFP) and adaptively adjusts the input dynamic range (DR) into a zoomed sub-LFP range to resolve tiny action potentials. Thanks to the reduced DR, the oversampling rate of the IADC can be reduced by 64.3% compared to the conventional approach, leading to significant power reduction. In addition, dual-band recording can be easily attained because the scheme continuously tracks LFPs without additional on-chip hardware. A prototype four-channel front-end IC has been fabricated in 180 nm standard CMOS processes. The IADC achieved 11.3-bit ENOB at 6.8 μW, resulting in the best Walden and SNDR FoMs, 107.9 fJ/c-s and 162.1 dB, respectively, among two different comparison groups: the IADCs reported up to date in the state-of-the-art neural recording front-ends; and the recent brain recording ADCs using similar zooming or tracking techniques to this work. The intrinsic dual-band recording feature reduces the post-processing FPGA resources for subcortical signal band separation by >45.8%. The front-end IC with the zoom-and-track IADC showed an NEF of 5.9 with input-referred noise of 8.2 μVrms, sufficient for subcortical recording. The performance of the whole front-end IC was successfully validated through in vivo animal experiments.  more » « less
Award ID(s):
1707316
NSF-PAR ID:
10450283
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Biomedical Circuits and Systems
ISSN:
1932-4545
Page Range / eLocation ID:
1 to 13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Trellis based detection with pattern dependent noise prediction (PDNP) has become standard practice in the HDD industry. In a typical single-track signal processing scheme, the received samples from the read head are first filtered by a linear equalizer with a 1D partial response (PR). The linear filter output flows into a trellis-based (e.g. BCJR) detector that employs a super-trellis based on the PR mask ISI channel and a 1D pattern dependent noise prediction (1D PDNP) algorithm. The effective channel model has a media noise term which models signal dependent noise due to, e.g., magnetic grains intersected by bit boundaries. The media noise can influence two or more bit readback values. The trellis detector sends soft estimates of the coded bits to a channel decoder, which outputs estimates of the user information bits. There are two problems with traditional PDNP. First, when the number of tracks Nt simultaneously processed is greater than one, e.g. in two-dimensional magnetic recording (TDMR), the number of trellis states can become impractically large; this is the state explosion problem. Second, the relatively simple autoregressive noise model and linear prediction used in PDNP is somewhat restrictive and may not accurately represent the media noise, especially at high storage densities; this is the modeling problem. To address the state explosion problem, we separate the ISI detection and media noise prediction into two separate detectors and use the turbo-principle to exchange information between them, thus avoiding use of a super-trellis. To address the modeling problem, we design and train deep neural network (DNN) based media noise predictors. As DNN models are much more general than autoregressive models, they give a more accurate model of magnetic media noise than PDNP; this more accurate modeling results in reduced detector BERs compared to PDNP. 
    more » « less
  2. Neural signal recording and optical stimulation using implantable devices have become a ubiquitous method to treat brain disorders, yet there lie some shortcomings, such as size, weight, and functionalities of the implants. This work presents a commercial off-the-shelf (COTS) component-based miniaturized wireless optogenetic headstage with simultaneous optical stimulation and electrophysiological recording for freely moving rats. The system includes a battery-based neural stimulator consisting of a low-dropout (LDO) regulator, an oscillator, and a μ LED. The electrophysiological signal recording system includes an intracortical neural probe implemented on a shape memory polymer (SMP) substrate, an array of neural amplifiers with an integrated analog-to-digital converter (ADC), a transceiver IC, and a ceramic antenna. A digital sub-1-GHz transceiver integrated with a low-power microcontroller (MCU) is used to transmit the acquired neural data to a remote receiver unit, followed by offline spike detection and sorting in LabVIEW. The front-end recording amplifiers provide a gain of 45.7 dB with the input-referred noise of 2.4μVrms . The integrated multiplexer (MUX) with the ADC allows sampling of the amplified voltage at a configurable sampling rate of 160–480 kSamples/s. The total power consumption of the stimulation and the recording system is 23 mW. The dimension of the headstage device is 13.5×21.3 mm, weighing 4 g without the battery. The system is experimentally validated in an in vivo setting by placing the headstage on the head of a male rat and recording the neural signals from the ventral tegmental area (VTA) of the brain. This integrative neural signal recording and spike sorting approach would be useful for the development of a closed-loop neuromodulation system. 
    more » « less
  3. null (Ed.)
    This paper presents a fully reconfigurable readout circuit including a chopper-stabilized neural amplifier and a successive approximation register (SAR) analog-to-digital converter (ADC) for neural signal recording applications. Since the target neural signals - action potentials (APs) and local field potentials (LFPs) differ in the peak amplitude while occupying different frequency bandwidths, gain, and bandwidth reconfigurability would be advantageous in improving power and noise performance. The readout circuit is designed in 180 nm standard CMOS technology. It achieves the mid-band gain of 50.3 dB in the frequency band of 0.1 Hz - 250 Hz to detect the LFPs, and 63.4 dB in 267 Hz - 20.8 kHz for detecting the APs. The neural amplifier consumes a total power of 1.54 μW and 1.94 μW for LFP and AP configurations, respectively. The input-referred noises have been achieved as 0.97 μV rms (0.1 Hz - 250 Hz), and 0.44 μV rms (250 Hz - 5 kHz), leading to a noise efficiency factor (NEF) of 1.27 and 1.21, for the two configurations, respectively. It rejects the generated large DC offset up to 40 mV at the electrode-tissue interface, by implementing a DC servo loop (DSL). The offset voltage with the DSL becomes 0.23 mV, which is acceptable for the neural experiments. Enabling the impedance boosting loop, the DC input impedance is found to be within the range of 1.77 - 2.27 GΩ, introducing the reconfigurability in impedance for matching with the electrode impedance. The SAR-ADC having a varying sampling frequency ranging from 10 - 40 ksamples/s demonstrates to digitize the APs and the LFPs with the resolution from 8 - 10 bits. The entire AFE provides good compatibility to record the neural signal while lowering the large DC offset down to 0.23 mV. 
    more » « less
  4. We present a neural interface system-on-chip (NISoC) with 1,024 channels of simultaneous electrical recording and stimulation for high-resolution high-throughput electrophysiology. The 2mm  2mm NISoC in 65nm CMOS integrates a 32  32 array of electrodes vertically coupled to analog front-ends supporting both voltage and current clamping through a programmable interface, ranging over 100dB in voltage and 120dB in current, with 0.82mW power per channel at 5.96mVrms input-referred voltage noise from DC to 12.5kHz signal bandwidth. This includes onchip acquisition with a back-end array of 32 dynamic incremental SAR ADCs for 25Msps 11-ENOB acquisition at 2fJ/level FOM. 
    more » « less
  5. This paper analyzes local field potentials (LFP) from 10 human subjects to discover frequency-dependent biomarkers of cognitive conflict. We utilize cortical and sub-cortical LFP recordings from the subjects during a cognitive task known as the Multi-Source Interference Task (MSIT). We decode the task engagement and discover biomarkers that may facilitate closed-loop neuromodulation to enhance cognitive control. First, we show that spectral power features in predefined frequency bands can be used to classify task and non-task segments with a median accuracy of 88.1%. Here the features are first ranked using the Bayes Factor and then used as inputs to subject-specific linear support vector machine classifiers. Second, we show that theta (4–8 Hz) band, and high gamma (65–200 Hz) band oscillations are modulated during the task performance. Third, by isolating time-series from specific brain regions of interest, we observe that a subset of the dorsolateral prefrontal cortex features is sufficient to decode the task states. The paper shows that cognitive control evokes robust neurological signatures, especially in the prefrontal cortex (PFC). 
    more » « less