Women make up only 28% of the workforce in STEM fields. It’s important to engage more girls in learning STEM; however, girls’ interests in STEM careers keep declining. It is well studied that the lack of sense of belonging underlies gender differences in STEM differentiation and achievement. Researchers have found that secondary girls’ sense of belonging declines as they age. To enhance secondary female students’ interests and self-concept in computing and engineering fields, the UNLV ITEST project sets the focus on engaging Girls in Ubiquitous Intelligence and Computing (GUIC) through a constructivist learning environment. In the GUIC Summer Camp, 40 secondary female students will take three-week training courses in Arduino & Internet of Things and Robotics Design and conduct two-week engineering project development in tiered teams co-mentored by STEM teachers and college student mentors. Based on the active learning method, the training courses are designed with interactive lectures and hands-on labs/activities. The engineering projects in ubiquitous intelligent systems are designed to connect computing & engineering concepts with real-world problems. Project demo results and students’ feedbacks have confirmed the effectiveness of the project activities in enhancing female students’ interests and self-efficacy in learning engineering and STEM. The unique constructivist learning environment is helpful in improving female students’ sense of belonging in STEM.
more »
« less
Development of Active-Learning Units in Nuclear Engineering
Active learning engages students in activities that could enhance their ability to analyze, synthesize, and evaluate the material being learned. Evidence-based studies have shown that active learning increases student performance in Science, Technology, Engineering, and Mathematics (STEM) courses. This paper presents the design of active learning units in nuclear engineering. The goal is to enhance students learning and technical skills, thereby improving their preparation for success in pursuing STEM graduate programs and careers in nuclear engineering. Three modes of active learning that are of interest are problem-solving, lab-based hands-on activities, and simulation. The active learning units are aimed at using interactive mode to provide students with the mastering of fundamental principles and concepts, and better understanding of how equations translate and apply to real-life engineering situations. The introductory nuclear engineering topics to be covered include radioactivity and half-life, binding energy, atom density, radiation interactions, radiation dose, radiation shielding, stopping power, and fission. An assessment plan for the effectiveness of the active-learnings units is also presented.
more »
« less
- Award ID(s):
- 1818732
- PAR ID:
- 10450332
- Editor(s):
- Lyoussi, A.; Carette, M.; Hodák, R.; Jenčič, I.; Le Dû, P.; Pospíšil, S.; Reynard-Carette, C.; Snoj, L.; Stekl, I.; Vermeeren, L.
- Date Published:
- Journal Name:
- EPJ Web of Conferences
- Volume:
- 253
- ISSN:
- 2100-014X
- Page Range / eLocation ID:
- 10003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Current research underscores that there are only a few evidence-based programs that teach STEM (science, technology, engineering, and mathematics) as part of their curriculum, especially for autistic students. Even fewer programs focus on engineering and design learning. Hence, we developed an informal afterschool maker program to develop autistic and non-autistic students’ interests in engineering to understand their experiences learning STEM concepts and values while applying the engineering mindset to develop projects. This qualitative study aimed to explore and understand students’ experiences participating in STEM activities in the maker club. We interviewed twenty-six students (seventeen autistic and nine non-autistic), nine teachers, and thirteen parents representing diverse cultural and socio-economic backgrounds across three public middle schools in a large urban metropolitan city between 2018 and 2019. Our thematic analysis yielded four themes:(1) active participation in STEM; (2) curiosity about STEM topics, concepts, and practices, (3) capacity-building to engage in STEM learning; and 4) understanding of the importance of STEM education in daily life.The results of this study enabled us to understand that students were deeply engaged with the content and curriculum of our program, expanded their knowledge base about scientific concepts, used engineering-specific scientific terminologies, and engaged with the engineering design process to conceptualize, test, improvise, and problem-solve. Furthermore, this afterschool engineering education program created a safe, nurturing, and stimulating environment for students to build engineering readiness skills.more » « less
-
Purpose This study aimed to evaluate the impact of active learning and competition on student engagement, motivation, and learning in a STEM-focused summer workshop. This was achieved through exposing K-12 high school students to experiential activities related to concepts within the realm of medicine and engineering. The research question asked was whether these instructional approaches could enhance student interest and effectiveness in understanding complex biomedical and engineering concepts and achieving the intended goals. Methods The workshop, conducted at Michigan Technological University, involved four distinct classes: Wound Healing, Robotic Arm Construction, C-section Simulation, and Engineering Design. Each class included an interactive lecture, a teamwork activity, and a competitive component. Student engagement, motivation, and perceptions of the teaching style were assessed through questionnaires, and statistical analysis was performed to identify significant differences across the classes. Results The study showed that the Wound Healing and Engineering Design classes, which fostered positive peer interaction the most along with longer time to achieve the tasks, led to higher student engagement and motivation compared to the Robotic Arm and C-section classes. Significant differences were observed in how students perceived the teaching style, with Wound healing and engineering design classes showing more effective instructional approaches. The variability in responses obtained suggests that while competition and active learning were helpful, their effectiveness depended on the complexity and structure of the activities and their relevance to the students’ interests. Conclusion STEM workshops for high school students are most effective when they balance active learning with structured competition, align task complexity with appropriate pre-scaffolding, and incorporate clear, collaborative goals. Future educational strategies should focus on using instructional approaches that aim to align the expectations of students with those of the instructors in order to maximize the effectiveness of STEM outreach programs.more » « less
-
null (Ed.)Abstract Since 2009, the mechanical engineering (ME) scholarship-science technology engineering and mathematics (S-STEM) Program at the University of Maryland Baltimore County (UMBC) has provided financial support and program activities to ME undergraduate students aiming at improving their retention and graduation rates. The objective of this study is to identify program activities that were most effective to help students for improvements. Current ME S-STEM scholars were asked to complete a survey that measures their scientific efficacy, engineering identity, expectations, integration, and sense of belonging, as well as how program activities impact their attitudes and perceptions. Analyses of 36 collected surveys showed that scholars reported high levels of engineering identity, expectations, and sense of belonging. However, further improvements were needed to help students in achieving scientific efficacy and academic integration into the program. Results demonstrated that pro-active mentoring was the most effective method contributing to positive attitudes and perceptions. The implemented S-STEM research-related activities and internship were viewed favorably by the scholars in helping them establish their scientific efficacy and engineering identity, and understand their expectations and goals. Community building activities were considered helpful for them to integrate into campus life and improve their sense of belonging to the campus and program. Scholars identified mentoring, research related activities, internships, and social interaction with faculty and their peers as important factors for their retention and graduation. Although the sample size was small in the study, we believe that the cost-effective activities identified could be adopted by other institutions to further improve students' retention and graduation rates in engineering programs.more » « less
-
null (Ed.)With support from the National Science Foundation, an evidence-based experimental centric pedagogy (ECP) is being implemented across STEM disciplines at an historically black university. This is the first of its kind, where the ECP is being extended to several STEM disciplines after its successful implementation in electrical engineering to promote motivation and enhance academic achievement of minority students. One of the project objectives is to organize workshops whereby STEM faculty in biology, chemistry, physics, civil engineering, computer science, industrial engineering and transportation systems will learn how to develop and implement ECP as an active learning pedagogy. This paper highlights the strategies used for planning, publicity, implementation, and assessment of the workshop conducted in Summer 2020. Due to the ongoing pandemic, the workshop was held virtually with 360 participants registering globally. The workshop’s focus was developing and implementing inexpensive home-based hands-on learning activities. Workshop assessment revealed that participants expressed positive outcomes, 84% reported that they believe the workshop was a good use of their time and 83% said they plan to implement what they had learned at the workshop in their own practice, affording the participants more opportunities to include home-based hands-on learning in their curriculum. This project seeks not only to increase public scientific literacy, but to also contribute to the development of a diverse, globally competitive STEM workforce.more » « less
An official website of the United States government

