skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Model Preserving Compression for Neural Networks
After training complex deep learning models, a common task is to compress the model to reduce compute and storage demands. When compressing, it is desirable to preserve the original model's per-example decisions (e.g., to go beyond top-1 accuracy or preserve robustness), maintain the network's structure, automatically determine per-layer compression levels, and eliminate the need for fine tuning. No existing compression methods simultaneously satisfy these criteria---we introduce a principled approach that does by leveraging interpolative decompositions. Our approach simultaneously selects and eliminates channels (analogously, neurons), then constructs an interpolation matrix that propagates a correction into the next layer, preserving the network's structure. Consequently, our method achieves good performance even without fine tuning and admits theoretical analysis. Our theoretical generalization bound for a one layer network lends itself naturally to a heuristic that allows our method to automatically choose per-layer sizes for deep networks. We demonstrate the efficacy of our approach with strong empirical performance on a variety of tasks, models, and datasets---from simple one-hidden-layer networks to deep networks on ImageNet.  more » « less
Award ID(s):
2146079
PAR ID:
10450579
Author(s) / Creator(s):
;  ; ;
Editor(s):
Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave, D.; Cho, K.; Oh, A.
Date Published:
Journal Name:
Advances in neural information processing systems
Volume:
35
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is an increasing number of pre-trained deep neural network models. However, it is still unclear how to effectively use these models for a new task. Transfer learning, which aims to transfer knowledge from source tasks to a target task, is an effective solution to this problem. Fine-tuning is a popular transfer learning technique for deep neural networks where a few rounds of training are applied to the parameters of a pre-trained model to adapt them to a new task. Despite its popularity, in this paper we show that fine-tuning suffers from several drawbacks. We propose an adaptive fine-tuning approach, called AdaFilter, which selects only a part of the convolutional filters in the pre-trained model to optimize on a per-example basis. We use a recurrent gated network to selectively fine-tune convolutional filters based on the activations of the previous layer. We experiment with 7 public image classification datasets and the results show that AdaFilter can reduce the average classification error of the standard fine-tuning by 2.54%. 
    more » « less
  2. We propose a data-driven approach for deep convolutional neural network compression that achieves high accuracy with high throughput and low memory requirements. Current network compression methods either find a low-rank factorization of the features that requires more memory, or select only a subset of features by pruning entire filter channels. We propose the Cascaded Projection (CaP) compression method that projects the output and input filter channels of successive layers to a unified low dimensional space based on a low-rank projection. We optimize the projection to minimize classification loss and the difference between the next layer’s features in the compressed and uncompressed networks. To solve this non-convex optimization problem we propose a new optimization method of a proxy matrix using back propagation and Stochastic Gradient Descent (SGD) with geometric constraints. Our cascaded projection approach leads to improvements in all critical areas of network compression: high accuracy, low memory consumption, low parameter count and high processing speed. The proposed CaP method demonstrates state-of-the-art results compressing VGG16 and ResNet networks with over 4× reduction in the number of computations and excellent performance in top-5 accuracy on the ImageNet dataset before and after fine-tuning. 
    more » « less
  3. Feature representations from pre-trained deep neural networks have been known to exhibit excellent generalization and utility across a variety of related tasks. Fine-tuning is by far the simplest and most widely used approach that seeks to exploit and adapt these feature representations to novel tasks with limited data. Despite the effectiveness of fine-tuning, itis often sub-optimal and requires very careful optimization to prevent severe over-fitting to small datasets. The problem of sub-optimality and over-fitting, is due in part to the large number of parameters used in a typical deep convolutional neural network. To address these problems, we propose a simple yet effective regularization method for fine-tuning pre-trained deep networks for the task of k-shot learning. To prevent overfitting, our key strategy is to cluster the model parameters while ensuring intra-cluster similarity and inter-cluster diversity of the parameters, effectively regularizing the dimensionality of the parameter search space. In particular, we identify groups of neurons within each layer of a deep network that shares similar activation patterns. When the network is to be fine-tuned for a classification task using only k examples, we propagate a single gradient to all of the neuron parameters that belong to the same group. The grouping of neurons is non-trivial as neuron activations depend on the distribution of the input data. To efficiently search for optimal groupings conditioned on the input data, we propose a reinforcement learning search strategy using recurrent networks to learn the optimal group assignments for each network layer. Experimental results show that our method can be easily applied to several popular convolutional neural networks and improve upon other state-of-the-art fine-tuning based k-shot learning strategies by more than10% 
    more » « less
  4. Network pruning is a widely used technique to reduce computation cost and model size for deep neural networks. However, the typical three-stage pipeline (i.e., training, pruning, and retraining (fine-tuning)) significantly increases the overall training time. In this article, we develop a systematic weight-pruning optimization approach based on surrogate Lagrangian relaxation (SLR), which is tailored to overcome difficulties caused by the discrete nature of the weight-pruning problem. We further prove that our method ensures fast convergence of the model compression problem, and the convergence of the SLR is accelerated by using quadratic penalties. Model parameters obtained by SLR during the training phase are much closer to their optimal values as compared to those obtained by other state-of-the-art methods. We evaluate our method on image classification tasks using CIFAR-10 and ImageNet with state-of-the-art multi-layer perceptron based networks such as MLP-Mixer; attention-based networks such as Swin Transformer; and convolutional neural network based models such as VGG-16, ResNet-18, ResNet-50, ResNet-110, and MobileNetV2. We also evaluate object detection and segmentation tasks on COCO, the KITTI benchmark, and the TuSimple lane detection dataset using a variety of models. Experimental results demonstrate that our SLR-based weight-pruning optimization approach achieves a higher compression rate than state-of-the-art methods under the same accuracy requirement and also can achieve higher accuracy under the same compression rate requirement. Under classification tasks, our SLR approach converges to the desired accuracy × faster on both of the datasets. Under object detection and segmentation tasks, SLR also converges 2× faster to the desired accuracy. Further, our SLR achieves high model accuracy even at the hardpruning stage without retraining, which reduces the traditional three-stage pruning into a two-stage process. Given a limited budget of retraining epochs, our approach quickly recovers the model’s accuracy. 
    more » « less
  5. Recent advances in unsupervised learning have shown that unsupervised pre-training, followed by fine-tuning, can improve model generalization. However, a rigorous understanding of how the representation function learned on an unlabeled dataset affects the generalization of the fine-tuned model is lacking. Existing theoretical research does not adequately account for the heterogeneity of the distribution and tasks in pre-training and fine-tuning stage. To bridge this gap, this paper introduces a novel theoretical framework that illuminates the critical factor influencing the transferability of knowledge acquired during unsupervised pre-training to the subsequent fine-tuning phase, ultimately affecting the generalization capabilities of the fine-tuned model on downstream tasks. We apply our theoretical framework to analyze generalization bound of two distinct scenarios: Context Encoder pre-training with deep neural networks and Masked Autoencoder pre-training with deep transformers, followed by fine-tuning on a binary classification task. Finally, inspired by our findings, we propose a novel regularization method during pre-training to further enhances the generalization of fine-tuned model. Overall, our results contribute to a better understanding of unsupervised pre-training and fine-tuning paradigm, and can shed light on the design of more effective pre-training algorithms. 
    more » « less