The behavior of colloidal particles near fluid interfaces has attracted significant scientific interest, as particles minimize the contact area between the two fluid phases, stabilizing interfacial systems. This study explores the influence of surface roughness on the properties of particle monolayers at the air–water interface, focusing on colloidal silica particles and fumed silica particles of similar hydrodynamic diameter. This research involves comparing low-surface-area (LSA) and medium-surface-area (MSA) fumed silica particles with spherical colloidal silica particles (250 nm in diameter). Utilizing a Langmuir trough, the interfacial particle networks are compressed and expanded. Analysis of surface pressure isotherms reveals that fumed silica particle monolayers form networks at a lower particle surface coverage compared to spherical particles. The spherical particle monolayer exhibits a higher apparent surface elasticity, indicating greater resistance to the applied compression compared to fumed silica networks. Additionally, monolayers formed by fumed silica particles display hysteresis even after successive compressions and expansions due to irreversible particle interlocking and the formation of multilayered aggregates. These findings provide insights into the impact of surface roughness on the behavior of particle monolayers at fluid interfaces, offering valuable information for designing and optimizing mechanisms involved in emulsion and foam stabilization.
more »
« less
Particle Size and Rheology of Silica Particle Networks at the Air–Water Interface
Silica nanoparticles find utility in different roles within the commercial domain. They are either employed in bulk within pharmaceutical formulations or at interfaces in anti-coalescing agents. Thus, studying the particle attributes contributing to the characteristics of silica particle-laden interfaces is of interest. The present work highlights the impact of particle size (i.e., 250 nm vs. 1000 nm) on the rheological properties of interfacial networks formed by hydrophobically modified silica nanoparticles at the air–water interface. The particle surface properties were examined using mobility measurements, Langmuir trough studies, and interfacial rheology techniques. Optical microscopy imaging along with Langmuir trough studies revealed the microstructure associated with various surface pressures and corresponding surface coverages (ϕ). The 1000 nm silica particle networks gave rise to a higher surface pressure at the same coverage compared to 250 nm particles on account of the stronger attractive capillary interactions. Interfacial rheological characterization revealed that networks with 1000 nm particles possess higher surface modulus and yield stress in comparison to the network obtained with 250 nm particles at the same surface pressure. These findings highlight the effect of particle size on the rheological characteristics of particle-laden interfaces, which is of importance in determining the stability and flow response of formulations comprising particle-stabilized emulsions and foams.
more »
« less
- Award ID(s):
- 1934513
- PAR ID:
- 10450609
- Date Published:
- Journal Name:
- Nanomaterials
- Volume:
- 13
- Issue:
- 14
- ISSN:
- 2079-4991
- Page Range / eLocation ID:
- 2114
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Interfacial rheology studies were conducted to establish a connection between the rheological characteristics of particle-laden interfaces and the stability of Pickering foams. The behavior of foams stabilized with fumed and spherical colloidal silica particles was investigated, focusing on foam properties such as bubble microstructure and liquid content. Compared to a sodium dodecyl sulfate-stabilized foam, Pickering foams exhibited a notable reduction in bubble coarsening. Drop shape tensiometry measurements on particle-coated interfaces indicated that the Gibbs stability criterion was satisfied for both particle types at various surface coverages, supporting the observed arrested bubble coarsening in particle-stabilized foams. However, although the overall foam height was similar for both particle types, foams stabilized with fumed silica particles demonstrated a higher resistance to liquid drainage. This difference was attributed to the higher yield strain of interfacial networks formed by fumed silica particles, as compared to those formed by spherical colloidal particles at similar surface pressures. Our findings highlight that while both particles can generate long-lasting foams, the resulting Pickering foams may exhibit variations in microstructure, liquid content, and resistance to destabilization mechanisms, stemming from the respective interfacial rheological properties in each case.more » « less
-
McCartney, J.S.; Tomac, I. (Ed.)Immiscible multiphase flow in porous media is largely affected by interfacial properties, manifested in contact angle and surface tension. The gas-liquid surface tension can be significantly altered by suspended particles at the interface. Particle-laden interfaces have unique properties, for example, a lower surface tension of interfaces laden with surfactants or nanoparticles. This study investigates the impacts of a motile bacterium Escherichia coli ( E. coli , strain ATCC 9637) on the air-water surface tension. Methods of the maximum bubble pressure, the du Noüy ring, and the pendant droplet are used to measure the surface tension of the motile-bacteria-laden interfaces. Measured surface tension remains independent to the E. coli concentration when using the maximum bubble pressure method, decreases with increased E. coli concentration in the du Noüy ring method, and presents time-dependent changes by the pendant drop method. The analyses show that the discrepancies may come from the different convection-diffusion processes of E. coli in the flow among various testing methods.more » « less
-
Abstract Understanding the interactive behavior of Janus particles (JPs) is a growing field of research. The enhancement in binding energy, in comparison to homogenous particles, and the dual characteristic of JPs open up new possibilities for novel applications. In many such applications, interfacial materials become subjected to flows that produce dilational and shear stresses. Therefore, it is important to understand the impact that the Janus character brings to interfaces. In this work, we study the microstructure of two-dimensional (2D) JP monolayers formed at the air–water interface and examine the shear viscoelasticity with an interface rheometer that was adapted for in situ surface pressure control via a Langmuir trough. We extend concepts from bulk rheology to data obtained from interfacial rheology as a tool to understand and predict the monolayer’s viscoelastic behavior. Finally, by calculating the time relaxation spectrum from the measured 2D dynamic moduli, we conclude that a phenomenon similar to glass transition is taking place by analogy.more » « less
-
Fluid−fluid interfaces are an attractive platform for self-assembling nanoparticles into low-dimensional materials. In this Perspective, we review recent developments in the use of interfaces to direct the assembly of spherical and anisotropic nanoparticles into diverse and sophisticated architectures. We illustrate how nanoparticle clusters, strings, networks, superlattices, chiral lattices, and quasicrystals can be self-assembled by harnessing the frustration between interfacial and interparticle forces. We highlight the role of polymeric ligands attached to the surface of nanoparticles in modulating assembly behavior by directly altering particle−fluid and particle−particle interactions or by deforming at interfaces and junctions between particles. We conclude by providing a roadmap of key questions and opportunities in this exciting field of interfacial assembly.more » « less
An official website of the United States government

