 Award ID(s):
 2110614
 NSFPAR ID:
 10450628
 Date Published:
 Journal Name:
 Chinese Physics Letters
 Volume:
 40
 Issue:
 5
 ISSN:
 0256307X
 Page Range / eLocation ID:
 050401
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract Detailed behaviors of the modes of quantized scalar fields in the Unruh state for various eternal black holes in two dimensions are investigated. It is shown that the latetime behaviors of some of the modes of the quantum fields and of the symmetric twopoint function are determined by infrared effects. The nature of these effects depends upon whether there is an effective potential in the mode equation and what form this potential takes. Here, three cases are considered, one with no potential and two with potentials that are nonnegative everywhere and are zero on the event horizon of the black hole and zero at either infinity or the cosmological horizon. Specifically, the potentials are a delta function potential and the potential that occurs for a massive scalar field in Schwarzschild–de Sitter spacetime. In both cases, scattering effects remove infrared divergences in the mode functions that would otherwise arise from the normalization process. When such infrared divergences are removed, it is found that the modes that are positive frequency with respect to the Kruskal time on the past black hole horizon approach zero in the limit that the radial coordinate is fixed and the time coordinate goes to infinity. In contrast, when there is no potential and thus infrared divergences occur, the same modes approach nonzero constant values in the latetime limit when the radial coordinate is held fixed. The behavior of the symmetric twopoint function when the field is in the Unruh state is investigated for the case of a delta function potential in certain asymptotically flat black hole spacetimes in two dimensions. The removal of the infrared divergences in the mode functions results in the elimination of terms that grow linearly in time.more » « less

Abstract Astrophysical black holes are expected to be described by the Kerr metric. This is the only stationary, vacuum, axisymmetric metric, without electromagnetic charge, that satisfies Einstein’s equations and does not have pathologies outside of the event horizon. We present new constraints on potential deviations from the Kerr prediction based on 2017 EHT observations of Sagittarius A* (Sgr A*). We calibrate the relationship between the geometrically defined black hole shadow and the observed size of the ringlike images using a library that includes both Kerr and nonKerr simulations. We use the exquisite prior constraints on the masstodistance ratio for Sgr A* to show that the observed image size is within ∼10% of the Kerr predictions. We use these bounds to constrain metrics that are parametrically different from Kerr, as well as the charges of several known spacetimes. To consider alternatives to the presence of an event horizon, we explore the possibility that Sgr A* is a compact object with a surface that either absorbs and thermally reemits incident radiation or partially reflects it. Using the observed image size and the broadband spectrum of Sgr A*, we conclude that a thermal surface can be ruled out and a fully reflective one is unlikely. We compare our results to the broader landscape of gravitational tests. Together with the bounds found for stellarmass black holes and the M87 black hole, our observations provide further support that the external spacetimes of all black holes are described by the Kerr metric, independent of their mass.more » « less

ABSTRACT AT 2018hyz (= ASASSN18zj) is a tidal disruption event (TDE) located in the nucleus of a quiescent E+A galaxy at a redshift of z = 0.04573, first detected by the AllSky Automated Survey for Supernovae (ASASSN). We present optical+UV photometry of the transient, as well as an Xray spectrum and radio upper limits. The bolometric light curve of AT 2018hyz is comparable to other known TDEs and declines at a rate consistent with a t−5/3 at early times, emitting a total radiated energy of E = 9 × 1050 erg. An excess bump appears in the UV light curve about 50 d after bolometric peak, followed by a flattening beyond 250 d. We detect a constant Xray source present for at least 86 d. The Xray spectrum shows a total unabsorbed flux of ∼4 × 10−14 erg cm−2 s−1 and is best fit by a blackbody plus powerlaw model with a photon index of Γ = 0.8. A thermal Xray model is unable to account for photons >1 keV, while a radio nondetection favours inverseCompton scattering rather than a jet for the nonthermal component. We model the optical and UV light curves using the Modular OpenSource Fitter for Transients (MOSFiT) and find a best fit for a black hole of 5.2 × 106 M⊙ disrupting a 0.1 M⊙ star; the model suggests the star was likely only partially disrupted, based on the derived impact parameter of β = 0.6. The low optical depth implied by the small debris mass may explain how we are able to see hydrogen emission with disclike line profiles in the spectra of AT 2018hyz (see our companion paper).more » « less

Vereshchagin, G. ; Ruffini, R. (Ed.)A method is presented which allows for the numerical computation of the stressenergy tensor for a quantized massless minimally coupled scalar field in the region outside the event horizon of a 4D Schwarzschild black hole that forms from the collapse of a null shell. This method involves taking the difference between the stressenergy tensor for the in state in the collapsing null shell spacetime and that for the Unruh state in Schwarzschild spacetime. The construction of the modes for the {\it in} vacuum state and the Unruh state is discussed. Applying the method, the renormalized stressenergy tensor in the 2D case has been computed numerically and shown to be in agreement with the known analytic solution. In 4D, the presence of an effective potential in the mode equation causes scattering effects that make the the construction of the in modes more complicated. The numerical computation of the in modes in this case is given.more » « less

Abstract In 2017 the Event Horizon Telescope (EHT) observed the supermassive black hole at the center of the Milky Way, Sagittarius A* (Sgr A*), at a frequency of 228.1 GHz (
λ = 1.3 mm). The fundamental physics tests that even a single pulsar orbiting Sgr A* would enable motivate searching for pulsars in EHT data sets. The high observing frequency means that pulsars—which typically exhibit steep emission spectra—are expected to be very faint. However, it also negates pulse scattering, an effect that could hinder pulsar detections in the Galactic center. Additionally, magnetars or a secondary inverse Compton emission could be stronger at millimeter wavelengths than at lower frequencies. We present a search for pulsars close to Sgr A* using the data from the three most sensitive stations in the EHT 2017 campaign: the Atacama Large Millimeter/submillimeter Array, the Large Millimeter Telescope, and the IRAM 30 m Telescope. We apply three detection methods based on Fourierdomain analysis, the fast folding algorithm, and singlepulse searches targeting both pulsars and burstlike transient emission. We use the simultaneity of the observations to confirm potential candidates. No new pulsars or significant bursts were found. Being the first pulsar search ever carried out at such high radio frequencies, we detail our analysis methods and give a detailed estimation of the sensitivity of the search. We conclude that the EHT 2017 observations are only sensitive to a small fraction (≲2.2%) of the pulsars that may exist close to Sgr A*, motivating further searches for fainter pulsars in the region.