skip to main content


Title: Impacts of fluorine in NASICON‐type materials as cathodes for aqueous zinc ion batteries
Abstract

Sodium superionic conductor (NASICON)‐type materials are getting more and more attention due to their high capacity and good cycling ability compared with other cathode materials in aqueous zinc ion batteries (AZIB). The present paper was to study the synthesis and electrochemical properties of two NASICON compounds of Na3V2(PO4)3and Na3V2(PO4)2F3and to understand the impacts of fluorine. Both Na3V2(PO4)3and Na3V2(PO4)2F3are synthesized by hydrothermal growth followed with annealing at 800°C in inert gas. With 3 mol/L Zn(CF3SO3)2in water as electrolyte, Na3V2(PO4)3offered a high storage capacity, while Na3V2(PO4)2F3demonstrated a high discharge voltage though low storage capacity. It was also found that the storage capacity of Na3V2(PO4)2F3increases with increased cycles; however, the compound undergoes a gradual phase transition. It is discussed possible approaches to attain both high discharge voltage and large capacity with good cycling stability.

 
more » « less
Award ID(s):
1803256
NSF-PAR ID:
10450678
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Energy Science & Engineering
Volume:
9
Issue:
7
ISSN:
2050-0505
Page Range / eLocation ID:
p. 938-949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Vanadium multiredox‐based NASICON‐NazV2−yMy(PO4)3(3 ≤z ≤ 4; M = Al3+, Cr3+, and Mn2+) cathodes are particularly attractive for Na‐ion battery applications due to their high Na insertion voltage (>3.5 V vs Na+/Na0), reversible storage capacity (≈150 mA h g−1), and rate performance. However, their practical application is hindered by rapid capacity fade due to bulk structural rearrangements at high potentials involving complex redox and local structural changes. To decouple these factors, a series of Mg2+‐substituted Na3+yV2−yMgy(PO4)3(0 ≤y ≤ 1) cathodes is studied for which the only redox‐active species is vanadium. While X‐ray diffraction (XRD) confirms the formation of solid solutions between they = 0 and 1 end members, X‐ray absorption spectroscopy and solid‐state nuclear magnetic resonance reveal a complex evolution of the local structure upon progressive Mg2+substitution for V3+. Concurrently, the intercalation voltage rises from 3.35 to 3.45 V, due to increasingly more ionic VO bonds, and the sodium (de)intercalation mechanism transitions from a two‐phase fory ≤ 0.5 to a solid solution process fory ≥ 0.5, as confirmed by in operando XRD, while Na‐ion diffusion kinetics follow a nonlinear trend across the compositional series.

     
    more » « less
  2. Abstract

    NASICON‐type sodium vanadium phosphate (Na3V2(PO4)3, or NVP) cathode materials have great potential for fast charging and long cycling sodium‐ion batteries (SIBs) similar to lithium iron phosphate (LiFePO4, or LFP) cathode materials used in lithium‐ion batteries (LIBs). However, the cycle life and energy density in the full cell using NVP materials need to be significantly improved. This paper investigates the degradation mechanisms of NVP‐based SIBs and identifies the Na loss from the cathode to the anode solid electrolyte interphase (SEI) reactions as the main cause of capacity degradation. A new Na‐rich NVP cathode (e.g., Na4V2(PO4)3, or Na4VP) is developed to address the Na loss problem. Conventional NVP can be easily transformed into the Na4VP by a facile and fast chemical solution treatment (30 s). Na‐free‐anode Na4VP and hard carbon‐Na4VP full cells are assembled to evaluate the electrochemical properties of the Na‐rich NVP cathode. The Na4VP cathode provides excess Na to compensate for the Na loss, resulting much longer cycle life in the full cells (>400 cycles) and a high specific energy and power density. Good low‐temperature performance is also observed.

     
    more » « less
  3. Abstract

    Aqueous zinc‐ion batteries are receiving increasing attention; however, the development of high‐voltage cathodes is limited by the narrow voltage window of conventional aqueous electrolytes. Herein, it is reported that Na3V2(PO4)2O1.6F1.4exhibits the excellent performance, optimal to date, among polyanion cathode materials in a novel neutral water‐in‐bisalts electrolyte of 25 m ZnCl2+ 5 m NH4Cl. It delivers a reversible capacity of 155 mAh g−1at 50 mA g−1, a high average operating potential of ≈1.46 V, and stable cyclability of 7000 cycles at 2 A g−1.

     
    more » « less
  4. Abstract

    Sodium ion batteries have attracted much attention in recent years, due to the higher abundance and lower cost of sodium, as an alternative to lithium ion batteries. However, a major challenge is their lower energy density. In this work, we report a novel multi‐electron cathode material, KVOPO4, for sodium ion batteries. Due to the unique polyhedral framework, the V3+↔ V4+↔ V5+redox couple was for the first time fully activated by sodium ions in a vanadyl phosphate phase. The KVOPO4based cathode delivered reversible multiple sodium (i.e. maximum 1.66 Na+per formula unit) storage capability, which leads to a high specific capacity of 235 Ah kg−1. Combining an average voltage of 2.56 V vs. Na/Na+, a high practical energy density of over 600 Wh kg−1was achieved, the highest yet reported for any sodium cathode material. The cathode exhibits a very small volume change upon cycling (1.4% for 0.64 sodium and 8.0% for 1.66 sodium ions). Density functional theory (DFT) calculations indicate that the KVOPO4framework is a 3D ionic conductor with a reasonably, low Na+migration energy barrier of ≈450 meV, in line with the good rate capability obtained.

     
    more » « less
  5. Abstract

    Repeated cold rolling and folding is employed to fabricate a metallurgical composite of sodium–antimony–telluride Na2(Sb2/6Te3/6Vac1/6) dispersed in electrochemically active sodium metal, termed “NST‐Na.” This new intermetallic has a vacancy‐rich thermodynamically stable face‐centered‐cubic structure and enables state‐of‐the‐art electrochemical performance in widely employed carbonate and ether electrolytes. NST‐Na achieves 100% depth‐of‐discharge (DOD) in 1mNaPF6in G2, with 15 mAh cm−2at 1 mA cm−2and Coulombic efficiency (CE) of 99.4%, for 1000 h of plating/stripping. Sodium‐metal batteries (SMBs) with NST‐Na and Na3V2(PO4)3 (NVP) or sulfur cathodes give significantly improved energy, cycling, and CE (>99%). An anode‐free battery with NST collector and NVP obtains 0.23% capacity decay per cycle. Imaging and tomography using conventional and cryogenic microscopy (Cryo‐EM) indicate that the sodium metal fills the open space inside the self‐supporting sodiophilic NST skeleton, resulting in dense (pore‐free and solid electrolyte interphase (SEI)‐free) metal deposits with flat surfaces. The baseline Na deposit consists of filament‐like dendrites and “dead metal”, intermixed with pores and SEI. Density functional theory calculations show that the uniqueness of NST lies in the thermodynamic stability of the Na atoms (rather than clusters) on its surface that leads to planar wetting, and in its own stability that prevents decomposition during cycling.

     
    more » « less