skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Kinematic processes contributing to the intensification of anomalously strong North Atlantic jets
Abstract Anomalously strong North Atlantic jets, defined in this study as jets with wind speeds exceeding 100 m·s−1, are notable due to their potential to induce high‐impact weather. This study examines the kinematic processes that contribute to the intensification of anomalously strong North Atlantic jets, as well as the variability in those processes across a large number of events. Anomalously strong jets are objectively identified during September–May 1979–2018 within the Climate Forecast System Reanalysis and composited to reveal the synoptic‐scale flow evolution associated with jet intensification. The analysis demonstrates that anomalously strong North Atlantic jets are most frequent during the winter compared with the fall and spring, and that their development is preceded by low‐level warm‐air advection, poleward moisture advection, and moist ascent within the warm conveyor belt of a surface cyclone beneath the equatorward jet‐entrance region. A diagnosis of the irrotational and nondivergent components of the ageostrophic wind within the near‐jet environment reveals that both wind components facilitate jet intensification via their nonnegligible contributions to negative potential vorticity (PV) advection and PV frontogenesis in the vicinity of the dynamic tropopause. Weather Research and Forecasting (WRF) model simulations of a jet event from December 2013 with and without latent heating further suggest that the ageostrophic wind field within the near‐jet environment is substantially modulated by latent heating. The foregoing results indicate that a diagnosis of jet intensification during anomalously strong jet events is dependent on an accurate representation of the cumulative effects of latent heating within the near‐jet environment.  more » « less
Award ID(s):
1624316
PAR ID:
10450704
Author(s) / Creator(s):
 
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Quarterly Journal of the Royal Meteorological Society
Volume:
147
Issue:
737
ISSN:
0035-9009
Page Range / eLocation ID:
p. 2506-2532
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract A polar–subtropical jet superposition is preceded by the development of a polar cyclonic potential vorticity (PV) anomaly at high latitudes and a tropical anticyclonic PV anomaly at subtropical latitudes. A confluent large-scale flow pattern can lead to the juxtaposition of these respective PV anomalies at middle latitudes, resulting in the addition of the nondivergent circulations induced by each PV anomaly and an increase in upper-tropospheric wind speeds at the location of jet superposition. Once these PV anomalies become juxtaposed, vertical motion within the near-jet environment facilitates the advection and diabatic redistribution of tropopause-level PV, and the subsequent formation of the steep, single-step tropopause structure that characterizes a jet superposition. Given the importance of vertical motion during the formation of jet superpositions, this study adopts a quasigeostrophic (QG) diagnostic approach to quantify the production of vertical motion during three types of jet superposition events: polar dominant, eastern subtropical dominant, and western subtropical dominant. The diagnosis reveals that the geostrophic wind induced by polar cyclonic QGPV anomalies is predominantly responsible for QG vertical motion in the vicinity of jet superpositions. The QG vertical motion diagnosed from the along-isotherm component of the Q vector, which represents the vertical motion associated with synoptic-scale waves, is dominant within the near-jet environment. The QG vertical motion diagnosed from the across-isotherm component of the Q vector, which represents the vertical motion associated with frontal circulations in the vicinity of the jet, is subordinate within the near-jet environment, but is relatively more important during eastern subtropical dominant events compared to polar dominant and western subtropical dominant events. 
    more » « less
  2. null (Ed.)
    Abstract A polar–subtropical jet superposition represents a dynamical and thermodynamic environment conducive to the production of high-impact weather. Prior work indicates that the synoptic-scale environments that support the development of North American jet superpositions vary depending on the case under consideration. This variability motivates an analysis of the range of synoptic–dynamic mechanisms that operate within a double-jet environment to produce North American jet superpositions. This study identifies North American jet superposition events during November–March 1979–2010 and subsequently classifies those events into three characteristic event types. “Polar dominant” events are those during which only the polar jet is characterized by a substantial excursion from its climatological latitude band, “subtropical dominant” events are those during which only the subtropical jet is characterized by a substantial excursion from its climatological latitude band, and “hybrid” events are those characterized by a mutual excursion of both jets from their respective climatological latitude bands. The analysis indicates that North American jet superposition events occur most often during November and December, and subtropical dominant events are the most frequent event type for all months considered. Composite analyses constructed for each event type reveal the consistent role that descent plays in restructuring the tropopause beneath the jet-entrance region prior to jet superposition. The composite analyses further show that surface cyclogenesis and widespread precipitation lead the development of subtropical dominant events and contribute to jet superposition via their associated divergent circulations and diabatic heating, whereas surface cyclogenesis and widespread precipitation tend to peak at the time of superposition and well downstream of polar dominant events. 
    more » « less
  3. Abstract Summer heatwaves over Europe, which can cause many deaths and severe damage, have become increasingly frequent over central and eastern Europe and western Russia in recent decades. In this paper, we estimate the contributions of the warming due to increased greenhouse gases (GHG) and nonlinear variations correlated with the Atlantic Multidecadal Oscillation (AMO) to the observed heatwave trend over Europe during 1980–2021, when the GHG‐induced warming over Europe exhibits a linear trend. It is found that GHG‐induced warming contributes to ∼57% of the European heatwave trend over 1980–2021, while the cold‐to‐warm phase shift of the AMO‐like variations accounts for ∼43% of the trend via the intensification of midlatitude North Atlantic jet. The recent trend of heatwaves over western and northern Europe is mainly due to GHG‐induced warming, while that over central and eastern Europe and western Russia is primarily related to the combined effect of the AMO‐like variations and GHG‐induced warming. To some extent, GHG‐induced warming is an amplifier of the increasing trend of recent AMO‐related European heatwaves. Moreover, European blocking (Ural blocking, UB) is shown to contribute to 55% (42%) of the AMO‐related heatwave trend via the influence of midlatitude North Atlantic jet. In the presence of a strong North Atlantic jet during the recent warm AMO phase, UB events concurrent with positive‐phase North Atlantic Oscillation can cause intense, persistent and widespread heatwaves over Europe such as that observed in the summer of 2022. 
    more » « less
  4. In future climate projections there is a notable lack of warming in the North Atlantic subpolar gyre, known as the North Atlantic warming hole (NAWH). In a set of large-ensemble atmospheric simulations with the Community Earth System Model, the NAWH was previously shown to contribute to the projected poleward shift and eastward elongation of the North Atlantic jet. The current study investigates the impact of the warming hole on sensible weather, particularly over Europe, using the same simulations. North Atlantic jet regimes are classified within the model simulations by applying self-organizing maps analysis to winter daily wind speeds on the dynamic tropopause. The NAWH is found to increase the prevalence of jet regimes with stronger and more-poleward-shifted jets. A previously identified transient eddy-mean response to the NAWH that leads to a downstream enhancement of wind speeds is found to be dependent on the jet regime. These localized regime-specific changes vary by latitude and strength, combining to form the broad increase in seasonal-mean wind speeds over Eurasia. Impacts on surface temperature and precipitation within the various North Atlantic jet regimes are also investigated. A large decrease in surface temperature over Eurasia is found to be associated with the NAWH in regimes where air masses are advected eastward over the subpolar gyre prior to reaching Eurasia. Precipitation is found to be locally suppressed over the warming hole region and increased directly downstream. The impact of this downstream response on coastal European precipitation is dependent on the strength of the NAWH. 
    more » « less
  5. The Great Plains (GP) low-level jet (GPLLJ) contributes to GP warm season water resources (precipitation), wind resources, and severe weather outbreaks. Past research has shown that synoptic and local mesoscale physical mechanisms (Holton and Blackadar mechanisms) are required to explain GPLLJ variability. Although soil moisture–PBL interactions are central to local mechanistic theories, the diurnal effect of regional soil moisture anomalies on GPLLJ speed, northward penetration, and propensity for severe weather is not well known. In this study, two 31-member WRF-ARW stochastic kinetic energy backscatter scheme ensembles simulate a typical warm season GPLLJ case under CONUS-wide wet and dry soil moisture scenarios. In the GP (24°–48°N, 103°–90°W), ensemble mean differences in sensible heating and PBL height of 25–150 W m −2 and 100–700 m, respectively, at 2100 UTC (afternoon) culminate in GPLLJ 850-hPa wind speed differences of 1–4 m s −1 12 hours later (0900 UTC; early morning). Greater heat accumulation in the daytime PBL over dry soil impacts the east–west geopotential height gradient in the GP (synoptic conditions and Holton mechanism) resulting in a deeper thermal low in the northern GP, causing increases in the geostrophic wind. Enhanced daytime turbulent mixing over dry soil impacts the PBL structure (Blackadar mechanism), leading to increased ageostrophic wind. Overnight geostrophic and ageostrophic winds constructively interact, leading to a faster nocturnal GPLLJ over dry soil. Ensemble differences in CIN (~50–150 J kg −1 ) and CAPE (~500–1000 J kg −1 ) have implications for severe weather predictability. 
    more » « less