skip to main content


Title: Kinematic processes contributing to the intensification of anomalously strong North Atlantic jets
Abstract

Anomalously strong North Atlantic jets, defined in this study as jets with wind speeds exceeding 100 m·s−1, are notable due to their potential to induce high‐impact weather. This study examines the kinematic processes that contribute to the intensification of anomalously strong North Atlantic jets, as well as the variability in those processes across a large number of events. Anomalously strong jets are objectively identified during September–May 1979–2018 within the Climate Forecast System Reanalysis and composited to reveal the synoptic‐scale flow evolution associated with jet intensification. The analysis demonstrates that anomalously strong North Atlantic jets are most frequent during the winter compared with the fall and spring, and that their development is preceded by low‐level warm‐air advection, poleward moisture advection, and moist ascent within the warm conveyor belt of a surface cyclone beneath the equatorward jet‐entrance region. A diagnosis of the irrotational and nondivergent components of the ageostrophic wind within the near‐jet environment reveals that both wind components facilitate jet intensification via their nonnegligible contributions to negative potential vorticity (PV) advection and PV frontogenesis in the vicinity of the dynamic tropopause. Weather Research and Forecasting (WRF) model simulations of a jet event from December 2013 with and without latent heating further suggest that the ageostrophic wind field within the near‐jet environment is substantially modulated by latent heating. The foregoing results indicate that a diagnosis of jet intensification during anomalously strong jet events is dependent on an accurate representation of the cumulative effects of latent heating within the near‐jet environment.

 
more » « less
Award ID(s):
1624316
NSF-PAR ID:
10450704
Author(s) / Creator(s):
 
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Quarterly Journal of the Royal Meteorological Society
Volume:
147
Issue:
737
ISSN:
0035-9009
Page Range / eLocation ID:
p. 2506-2532
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Perturbations to the potential vorticity (PV) waveguide, which can result from latent heat release within the warm conveyor belt (WCB) of midlatitude cyclones, can lead to the downstream radiation of Rossby waves, and in turn high-impact weather events. Previous studies have hypothesized that forecast uncertainty associated with diabatic heating in WCBs can result in large downstream forecast variability; however, these studies have not established a direct connection between the two. This study evaluates the potential impact of latent heating variability in the WCB on subsequent downstream forecasts by applying the ensemble-based sensitivity method to European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble forecasts of a cyclogenesis event over the North Atlantic. For this case, ensemble members with a more amplified ridge are associated with greater negative PV advection by the irrotational wind, which is associated with stronger lower-tropospheric southerly moisture transport east of the upstream cyclone in the WCB. This transport is sensitive to the pressure trough to the south of the cyclone along the cold front, which in turn is modulated by earlier differences in the motion of the air masses on either side of the front. The position of the cold air behind the front is modulated by upstream tropopause-based PV anomalies, such that a deeper pressure trough is associated with a more progressive flow pattern, originating from Rossby wave breaking over the North Pacific. Overall, these results suggest that more accurate forecasts of upstream PV anomalies and WCBs may reduce forecast uncertainty in the downstream waveguide.

     
    more » « less
  2. null (Ed.)
    Abstract A polar–subtropical jet superposition is preceded by the development of a polar cyclonic potential vorticity (PV) anomaly at high latitudes and a tropical anticyclonic PV anomaly at subtropical latitudes. A confluent large-scale flow pattern can lead to the juxtaposition of these respective PV anomalies at middle latitudes, resulting in the addition of the nondivergent circulations induced by each PV anomaly and an increase in upper-tropospheric wind speeds at the location of jet superposition. Once these PV anomalies become juxtaposed, vertical motion within the near-jet environment facilitates the advection and diabatic redistribution of tropopause-level PV, and the subsequent formation of the steep, single-step tropopause structure that characterizes a jet superposition. Given the importance of vertical motion during the formation of jet superpositions, this study adopts a quasigeostrophic (QG) diagnostic approach to quantify the production of vertical motion during three types of jet superposition events: polar dominant, eastern subtropical dominant, and western subtropical dominant. The diagnosis reveals that the geostrophic wind induced by polar cyclonic QGPV anomalies is predominantly responsible for QG vertical motion in the vicinity of jet superpositions. The QG vertical motion diagnosed from the along-isotherm component of the Q vector, which represents the vertical motion associated with synoptic-scale waves, is dominant within the near-jet environment. The QG vertical motion diagnosed from the across-isotherm component of the Q vector, which represents the vertical motion associated with frontal circulations in the vicinity of the jet, is subordinate within the near-jet environment, but is relatively more important during eastern subtropical dominant events compared to polar dominant and western subtropical dominant events. 
    more » « less
  3. Abstract

    The synoptic evolution and mechanisms for the largest medium-range (72–120 h) along-track errors of tropical cyclones (TC) are investigated. The mean along-track errors (ATEs) of the 51-member European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble are evaluated for 393 forecasts (85 TCs) during the 2008 to 2016 North Atlantic seasons. The 27 unique forecasts within the upper quintile of most negative ATEs (i.e., slow bias greater than 500 km by 72 h) are inherently fast-moving TCs that undergo extratropical transition as they recurve and interact with a 300-hPa upstream trough and a downstream ridge. Both the trough and ridge are underamplified by only 5–10 m ~60 h before the time of largest ATE. The height errors then grow rapidly due to underpredicted 300–200-hPa potential vorticity advection by both the nondivergent wind and the irrotational wind from the TC’s outflow. Both wind components are underpredicted and result in weak biases in the trough’s developing potential vorticity gradient and associated jet streak. The underamplification of the upstream trough is exacerbated by underpredicted 700-hPa cold advection extending from beneath the trough into the TC at 48–36 h before the largest ATE. Standardized differences are consistent with the mean errors and reveal that weaker divergent outflow is driven by underpredicted near-TC precipitation, which corresponds to underpredicted 700-hPa moisture fluxes near the TC at ~108 h before the largest ATE. The ensemble member ATEs at 72–120 h generally show little correlation with their ATEs before 36 h, suggesting that initial position uncertainty is not the primary source of ATE variability later in the forecast.

     
    more » « less
  4. Upper-level static stability ( N2) variations can influence the evolution of the transverse circulation and potential vorticity in intensifying tropical cyclones (TCs). This paper examines these variations during the rapid intensification (RI) of a simulated TC. Over the eye, N2near the tropopause decreases and the cold-point tropopause rises by up to 4 km at the storm center. Outside of the eye, N2increases considerably just above the cold-point tropopause and the tropopause remains near its initial level. A budget analysis reveals that the advection terms, which include differential advection of potential temperature θ and direct advection of N2, are important throughout the upper troposphere and lower stratosphere. These terms are particularly pronounced within the eye, where they destabilize the layer near and above the cold-point tropopause. Outside of the eye, a radial–vertical circulation develops during RI, with strong outflow below the tropopause and weak inflow above. Differential advection of θ near the outflow jet provides forcing for stabilization below the outflow maximum and destabilization above. Turbulence induced by vertical wind shear on the flanks of the outflow maximum also modifies the vertical stability profile. Meanwhile, radiative cooling tendencies at the top of the cirrus canopy generally act to destabilize the upper troposphere and stabilize the lower stratosphere. The results suggest that turbulence and radiation, alongside differential advection, play fundamental roles in the upper-level N2evolution of TCs. These N2tendencies could have implications for both the TC diurnal cycle and the tropopause-layer potential vorticity evolution in TCs.

     
    more » « less
  5. Abstract

    The Mississippi River basin drains nearly one-half of the contiguous United States, and its rivers serve as economic corridors that facilitate trade and transportation. Flooding remains a perennial hazard on the major tributaries of the Mississippi River basin, and reducing the economic and humanitarian consequences of these events depends on improving their seasonal predictability. Here, we use climate reanalysis and river gauge data to document the evolution of floods on the Missouri and Ohio Rivers—the two largest tributaries of the Mississippi River—and how they are influenced by major modes of climate variability centered in the Pacific and Atlantic Oceans. We show that the largest floods on these tributaries are preceded by the advection and convergence of moisture from the Gulf of Mexico following distinct atmospheric mechanisms, where Missouri River floods are associated with heavy spring and summer precipitation events delivered by the Great Plains low-level jet, whereas Ohio River floods are associated with frontal precipitation events in winter when the North Atlantic subtropical high is anomalously strong. Further, we demonstrate that the El Niño–Southern Oscillation can serve as a precursor for floods on these rivers by mediating antecedent soil moisture, with Missouri River floods often preceded by a warm eastern tropical Pacific (El Niño) and Ohio River floods often preceded by a cool eastern tropical Pacific (La Niña) in the months leading up peak discharge. We also use recent floods in 2019 and 2021 to demonstrate how linking flood hazard to sea surface temperature anomalies holds potential to improve seasonal predictability of hydrologic extremes on these rivers.

     
    more » « less