Ice Lithography (IL) is a new technique for electron beam lithography that employs conformal ices (i.e., solid phase condensed gasses) as sacrificial resist layers for lithographic processes on a variety of sample types. The completely dry in-situ processing inherent in IL allows for high precision patterning of delicate and organic surfaces such as atomic force microscope (AFM) tips and proteins. In this talk I will present an overview of the capabilities of the MU IL instrument and describe our recent work, which is centered on pushing ice species beyond water. Amorphous H2O ice is a material that has been well characterized in the astrophysics community but has received little attention from the nanotechnology field. It is a positive resist that requires large critical doses (about 2C/cm^2 for 200nm thick ice). The alcohols (ethanol, methanol and isopropanol) are attractive candidates to complement water ice. They are negative phase resists which exhibit lower critical dose (0.2C/cm^2 for 200nm thick ice) requirements than water ice. We are exploring the use of alcohol resists in conjunction with Reactive Ion Etching (RIE) for accurate modification of small, delicate, structures such as AFM tips. We are also interested in characterizing the residual material from alcohol ices after exposure to the electron beam which can be achieved through several methods including Electron Energy Loss Spectroscopy (EELS) and simulations such as the high energy chemistry program GEANT-4.
more »
« less
Green Lithography for Delicate Materials
Abstract A variety of unconventional materials, including biological nanostructures, organic and hybrid semiconductors, as well as monolayer, and other low‐dimensional systems, are actively explored. They are usually incompatible with standard lithographic techniques that use harsh organic solvents and other detrimental processing. Here, a new class of green and gentle lithographic resists, compatible with delicate materials and capable of both top‐down and bottom‐up fabrication routines is developed. To demonstrate the excellence of this approach, devices with sub‐micron features are fabricated on organic semiconductor crystals and individual animal's brain microtubules. Such structures are created for the first time, thanks to the genuinely water‐based lithography, which opens an avenue for the thorough research of unconventional delicate materials at the nanoscale.
more »
« less
- Award ID(s):
- 1806363
- PAR ID:
- 10450741
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 31
- Issue:
- 27
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Spin–orbit torques generated by a spin current are key to magnetic switching in spintronic applications. The polarization of the spin current dictates the direction of switching required for energy‐efficient devices. Conventionally, the polarizations of these spin currents are restricted to be along a certain direction due to the symmetry of the material allowing only for efficient in‐plane magnetic switching. Unconventional spin–orbit torques arising from novel spin current polarizations, however, have the potential to switch other magnetization orientations such as perpendicular magnetic anisotropy, which is desired for higher density spintronic‐based memory devices. Here, it is demonstrated that low crystalline symmetry is not required for unconventional spin–orbit torques and can be generated in a nonmagnetic high symmetry material, iridium dioxide (IrO2), using epitaxial design. It is shown that by reducing the relative crystalline symmetry with respect to the growth direction large unconventional spin currents can be generated and hence spin–orbit torques. Furthermore, the spin polarizations detected in (001), (110), and (111) oriented IrO2thin films are compared to show which crystal symmetries restrict unconventional spin transport. Understanding and tuning unconventional spin transport generation in high symmetry materials can provide a new route towards energy‐efficient magnetic switching in spintronic devices.more » « less
-
Abstract BackgroundGelatinous zooplankton can be difficult to preserve morphologically due to unique physical properties of their cellular and acellular components. The relatively large volume of mesoglea leads to distortion of the delicate morphology and poor sample integrity in specimens prepared with standard aldehyde or alcohol fixation techniques. Similar challenges have made it difficult to extend standard laboratory methods such as in situ hybridization to larger juvenile ctenophores, hampering studies of late development. ResultsWe have found that a household water repellant glass treatment product commonly used in laboratories, Rain-X®, alone or in combination with standard aldehyde fixatives, greatly improves morphological preservation of such delicate samples. We present detailed methods for preservation of ctenophores of diverse sizes compatible with long-term storage or detection and localization of target molecules such as with immunohistochemistry and in situ hybridization and show that this fixation might be broadly useful for preservation of other delicate marine specimens. ConclusionThis new method will enable superior preservation of morphology in gelatinous specimens for a variety of downstream goals. Extending this method may improve the morphological fidelity and durability of museum and laboratory specimens for other delicate sample types.more » « less
-
Abstract The optoelectronic properties of semiconducting polymers and device performance rely on a delicate interplay of design and processing conditions. However, screening and optimizing the relationships between these parameters for reliably fabricating organic electronics can be an arduous task requiring significant time and resources. To overcome this challenge, Polybot is developed—a robotic platform within a self‐driving lab that can efficiently produce organic field‐effect transistors (OFETs) from various semiconducting polymers via high‐throughput blade coating deposition. Polybot not only handles the fabrication process but also can conduct characterization tests on the devices and autonomously analyze the data gathered, thus facilitating the rapid acquisition of data on a large scale. This work leverages the capabilities of this platform to investigate the fabrication of OFETs using hydrogen bonding‐containing semiconducting polymers. Through high‐throughput fabrication and characterization, various data trends are analyzed, and large extents of anisotropic charge mobility are observed in devices. The materials are thoroughly characterized to understand the role of processing conditions in solid state and electronic properties of these organic semiconductors. The findings demonstrate the effectiveness of automated fabrication and characterization platforms in uncovering novel structure–property relationships, facilitating refinement of rational chemical design, and processing conditions, ultimately leading to new semiconducting materials.more » « less
-
Abstract Bending and folding techniques such as origami and kirigami enable the scale‐invariant design of 3D structures, metamaterials, and robots from 2D starting materials. These design principles are especially valuable for small systems because most micro‐ and nanofabrication involves lithographic patterning of planar materials. Ultrathin films of inorganic materials serve as an ideal substrate for the fabrication of flexible microsystems because they possess high intrinsic strength, are not susceptible to plasticity, and are easily integrated into microfabrication processes. Here, atomic layer deposition (ALD) is employed to synthesize films down to 2 nm thickness to create membranes, metamaterials, and machines with micrometer‐scale dimensions. Two materials are studied as model systems: ultrathin SiO2and Pt. In this thickness limit, ALD films of these materials behave elastically and can be fabricated with fJ‐scale bending stiffnesses. Further, ALD membranes are utilized to design micrometer‐scale mechanical metamaterials and magnetically actuated 3D devices. These results establish thin ALD films as a scalable basis for micrometer‐scale actuators and robotics.more » « less
An official website of the United States government
