Abstract Tangential flow filtration is advantageous for bioreactor clarification as the permeate stream could be introduced directly to the subsequent product capture step. However, membrane fouling coupled with high product rejection has limited its use. Here, the performance of a reverse asymmetric hollow fiber membrane where the more open pore structure faces the feed stream and the barrier layer faces the permeate stream has been investigated. The open surface contains pores up to 40 μm in diameter while the tighter barrier layer has an average pore size of 0.4 μm. Filtration of Chinese hamster ovary cell feed streams has been investigated under conditions that could be expected in fed batch operations. The performance of the reverse asymmetric membrane is compared to that of symmetric hollow fiber membranes with nominal pore sizes of 0.2 and 0.65 μm. Laser scanning confocal microscopy was used to observe the locations of particle entrapment. The throughput of the reverse asymmetric membrane is significantly greater than the symmetric membranes. The membrane stabilizes an internal high permeability cake that acts like a depth filter. This stabilized cake can remove particulate matter that would foul the barrier layer if it faced the feed stream. An empirical model has been developed to describe the variation of flux and transmembrane pressure drop during filtration using reverse asymmetric membranes. Our results suggest that using a reverse asymmetric membrane could avoid severe flux decline associated with fouling of the barrier layer during bioreactor clarification.
more »
« less
Modeling tangential flow filtration using reverse asymmetric membranes for bioreactor harvesting
Abstract Tangential flow filtration (TFF) has many advantages for bioreactor harvesting, as the permeate could be introduced directly to the subsequent capture step. However, membrane fouling has limited its widespread use. This is particularly problematic given the high cell densities encountered today. Here, a reverse asymmetric membrane, where the more open surface faces the feed stream and the tighter barrier layer faces the permeate stream, has been investigated. The open surface contains pores up to 40 μm in diameter while the tighter barrier layer has an average pore size of 0.4 μm. Filtration of yeast suspensions has been conducted under a range of conditions. The yeast cells are trapped in the open pore structure. The membrane stabilizes an internal porous cake that acts like a depth filter. This stabilized cake layer can remove particulate matter that would foul the barrier layer if it faced the feed stream. As filtration continues, a surface cake layer forms on the membrane surface. A resistance in series model has been developed to describe the permeate flux during TFF. The model contains three fitted parameters which can easily be determined from constant pressure normal flow filtration experiments and total recycle constant flux TFF experiments. The model can be used to estimate the capacity of the filter for a given feed stream. Our results suggest that using a reverse asymmetric membrane could avoid severe flux decline associated with fouling of the barrier layer during bioreactor harvesting.
more »
« less
- Award ID(s):
- 1822101
- PAR ID:
- 10450793
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Biotechnology Progress
- Volume:
- 37
- Issue:
- 1
- ISSN:
- 8756-7938
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Tangential flow microfiltration is easily adapted for batch and continuous bioreactor clarification. The permeate can be introduced directly to the subsequent capture step. However, the commercial use of tangential flow filtration (TFF) is limited by membrane fouling, leading to a compromised performance. Here, we explored the possibility of reducing membrane fouling by integrating a hydrocyclone as the primary clarification operation. The overflow from the hydrocyclone was introduced directly as the feed to the microfiltration module. Chinese hamster ovary cells were used as the feed stream to investigate the feasibility of this integrated process. A range of cell viabilities from 0% (cell lysate) to 96% were investigated. The cell densities ranged from 0.9 to 10 million cells per mL. Two commercially available hollow fiber microfiltration membranes were used, an essentially symmetric membrane and a reverse asymmetric membrane where the more open support structure faced the feed stream. The reverse asymmetric membrane was more resistant to fouling in the absence of an integrated hydrocyclone. Integrating a hydrocyclone led to a reduction in the flux decline for the symmetric membrane, but did not affect the performance of the reverse asymmetric membrane. The careful choice of membrane morphology and pore size is important when designing an integrated process.more » « less
-
null (Ed.)Simultaneous fouling and pore wetting of the membrane during membrane distillation (MD) is a major concern. In this work, an electrospun bilayer membrane for enhancing fouling and wetting resistance has been developed for treating hydraulic fracture-produced water (PW) by MD. These PWs can contain over 200,000 ppm total dissolved solids, organic compounds and surfactants. The membrane consists of an omniphobic surface that faces the permeate stream and a hydrophilic surface that faces the feed stream. The omniphobic surface was decorated by growing nanoparticles, followed by silanization to lower the surface energy. An epoxied zwitterionic polymer was grafted onto the membrane surface that faces the feed stream to form a tight antifouling hydration layer. The membrane was challenged with an aqueous NaCl solution containing sodium dodecyl sulfate (SDS), an ampholyte and crude oil. In the presence of SDS and crude oil, the membrane was stable and displayed salt rejection (>99.9%). Further, the decrease was much less than the base polyvinylidene difluoride (PVDF) electrospun membrane. The membranes were also challenged with actual PW. Our results highlight the importance of tuning the properties of the membrane surface that faces the feed and permeate streams in order to maximize membrane stability, flux and salt rejection.more » « less
-
Recent advances in the use of viral vectors for gene therapy has created a need for efficient downstream processing of these novel therapeutics. Single-pass tangential flow filtration (SPTFF) can potentially improve final product quality via reductions in shear, and it can increase manufacturing productivity via simple implementation into continuous/intensified processes. This study investigated the impact of variations in pressure and flow rate along the length of the membrane on overall SPTFF performance. Constant-flux filtration experiments at feed fluxes from 14 to 420 L/m2/h (Reynolds numbers <20) were performed using Pellicon® 3 TFF cassettes with fluorescent nanoparticles as model viral vectors. The location of nanoparticle accumulation shifted towards the filter outlet at high conversion and was also a function of the permeate flow configuration. These phenomena were explained using a newly developed concentration polarization model that predicts the distribution in local wall concentration over the length of the membrane. The model accurately captured the observed nanoparticle accumulation trends, including the effects of the permeate flow profile (co-current, divergent, or convergent flow) on nanoparticle accumulation within the SPTFF module. Nanoparticle accumulation at moderate conversion was more uniform using convergent flow, but nanoparticle accumulation at 80 % conversion (5x concentration factor) can be minimized using a divergent flow configuration. The local wall concentration model was also used to evaluate the critical flux by assuming that fouling occurs when the nanoparticle concentration at any point along the membrane surface exceeds 15 % by volume. These results provide important insights for the design and operation of SPTFF technology for inline concentration of viral vectors.more » « less
-
To unravel fouling and defouling mechanisms of protein, saccharides and natural organic matters (NOM) on polymeric membrane during filtration, this study investigated filtration characteristics on polyvinyl chloride (PVC) ultrafiltration membranes with bovine serum albumin, dextran, humic acid as model foulants. Membrane fouling and defouling performances were analyzed through monitoring the flux decline during filtration and flux recovery during physical backwash. Physico-chemical properties (e.g., hydrophobicity and surface charge) of PVC membrane and foulants were characterized, which were used in the extended Derjaguin–Landau–Verwey–Overbeek (EDLVO) theory to calculate the interaction energies between membrane foulant and foulant-foulant. The results showed that at the later filtration stages the fouling rate was strongly correlated with the deposition rate, which was determined by the interaction energy profile calculated by EDLVO. Moreover, the adhesion forces of membrane–foulant and foulant–foulant were further measured by atomic force microscopy (AFM) with modified colloidal probes. A positive correlation (R2 =0.845) between particle detachment rate (determined by adhesion force) and defouling rate was developed for BSA and HA foulants that led to cake layer formation. By contrast, dextran defouling rate was off this correlation as dextran partially clogged membrane pores due to its smaller size.more » « less
An official website of the United States government
