Abstract Despite recent advances in polyelectrolyte systems, designing responsive hydrogel interfaces to meet application requirements still proves challenging. Here, semicrystalline colloidal gels composed of poly(methacrylamide‐co‐methacrylic acid) are investigated in water with storage moduli in the MPa range. A combination of SEM, X‐ray scattering, and NMR reveals the evolution of the colloidal microstructure, crystallinity, and hydrogen bonding with varying monomer ratio. The gels with the finest colloidal microstructure exhibit the most dissipative rheological behavior and are selected for the study of their interfacial characteristics and underlying interactions. Microstructure stabilization and dynamics results from short‐range (attractive) hydrogen bonding and hydrophobic forces, and long‐range (repulsive) electrostatic interactions—the “SALR” pair potential. Further, the gel's surface exhibits a submicron colloidal topography that greatly determines (colloidal‐like) friction as a result of the viscoelastic deformation of the colloidal network, while electrostatic near‐surface interactions propagate in lamellar adhesion. The dynamic and reversible nature of the involved interactions introduces a stimulus responsive behavior that enables the electrotunability of adhesion and friction. This study advances the knowledge necessary to design complex hydrogel interfaces that enable spatial and dynamic control of surface properties, which is of relevance for applications in biomedical devices, soft tissue design, soft robotics, and other engineered tribosystems. 
                        more » 
                        « less   
                    
                            
                            Repulsion of Polar Gels From Water: Hydration‐Triggered Actuation, Self‐Folding, and 3D Fabrication
                        
                    
    
            Abstract Synthetic materials that mimic the ability of natural occurring features to self‐actuate in response to different stimuli have wide applications in soft robotics, microdevices, drug delivery, regenerative medicine, and sensing. Here, unexpected and counter‐intuitive findings are presented in which a strongly polyelectrolytic hydrogel repels from strong polar solvents upon partial exposure (e.g., partial hydration by water). This repulsion drives the actuation and self‐folding of the gel, which results in rapid formation of different three‐dimensional shapes by simply placing the corresponding two‐dimensional films on water. A detailed investigation into the role of hydrogel chemistry, pH, and morphology on hydration‐triggered actuation behavior of the gels and their nanocomposites is described. Finally, a computational model is developed in order to further elucidate mechanisms of actuation. Modeling partial hydration as a repulsive driving force, it tracks the evolution of the shape of the thin film that results from restoring elastic forces. Taken together, the results indicate that an interplay between elastic and Coulombic repulsive forces leads to seemingly unexpected behavior of actuation of strongly polyelectrolytic gels away from polar solvents, leading to a novel and simple fabrication strategy for diverse 3D devices. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10451040
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Interfaces
- Volume:
- 7
- Issue:
- 16
- ISSN:
- 2196-7350
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Carbohydrate-based low molecular weight gelators (LMWGs) exhibit many desirable properties making them useful in various fields including applications as drug delivery carriers. In order to further understand the structural connection to gelation properties, especially the influence of halide substitutions, we have designed and synthesized a series of para-chlorobenzylidene acetal protected D-glucosamine amide derivatives. Fifteen different amides were synthesized, and their self-assembling properties were assessed in multiple organic solvents, as well as mixtures of organic solvents with water. All derivatives were found to be gelators for at least one solvent and majority formed gels in multiple solvents at concentrations lower than 2 wt%. A few derivatives rendered remarkably stable gels in aqueous solutions at concentrations below 0.1 wt%. The benzamide 13 formed gels in water and in EtOH/H2O (v/v 1:2) at 0.36 mg/mL. The gels were characterized using optical microscopy and atomic force microscopy, and the self-assembly mechanism was probed using variable temperature 1H-NMR spectroscopy. Gel extrusion studies using H2O/DMSO gels successfully printed lines of gels on glass slides, which retained viscoelasticity based on rheology. Gels formed by the benzamide 13 were used for encapsulation and the controlled release of chloramphenicol and naproxen, as well as for dye removal for toluidine blue aqueous solutions.more » « less
- 
            Abstract During behavior, the work done by actuators on the body can be resisted by the body's inertia, elastic forces, gravity, or viscosity. The dominant forces that resist actuation have major consequences on the control of that behavior. In the literature, features and actuation of locomotion, for example, have been successfully predicted by nondimensional numbers (e.g. Froude number and Reynolds number) that generally express the ratio between two of these forces (gravitational, inertial, elastic, and viscous). However, animals of different sizes or motions at different speeds may not share the same dominant forces within a behavior, making ratios of just two of these forces less useful. Thus, for a broad comparison of behavior across many orders of magnitude of limb length and cycle period, a dimensionless number that includes gravitational, inertial, elastic, and viscous forces is needed. This study proposes a nondimensional number that relates these four forces: the phase shift (ϕ) between the displacement of the limb and the actuator force that moves it. Using allometric scaling laws, ϕ for terrestrial walking is expressed as a function of the limb length and the cycle period at which the limb steps. Scale-dependent values of ϕ are used to explain and predict the electromyographic (EMG) patterns employed by different animals as they walk.more » « less
- 
            We demonstrate a self-folding paper robot with capillary force driven fluid. When water is sprayed on fluidic channels patterned on paper, the 2-D sheet of paper can be controllably self-folded into various 3-D structures; half-oval, circle, round-edge square, triangle, half-circle, and table. The self-folding paper sheet can be readily fabricated via a double-sided wax printing method, forming a bilayer structure of the fluidic channel and the hydrophobic wax, in which these two layers have different swelling/shrinking properties. The patterned paper performs folding actuation with water and unfolding behavior with evaporation without being mechanically manipulated by external forces or moments. Finally, we create a paper gripper based on this self-folding actuation, conveying a low-weight object. This report demonstrates the possibility of paper microfluidics for self-folding actuation and soft robotics.more » « less
- 
            The behavior of permeable, elastic particles sliding along a repulsive wall is examined computationally. It is found that particles will stick or slip depending on the interplay of elastohydrodynamic and repulsive forces, and the flow in the porous particle. Particles slip when either the elastohydrodynamic lift or repulsive forces are large and create a supporting lubricating film of fluid. However, for lower values of elastohydrodynamic lift or repulsive forces, the flow within the porous particle reduces the pressure in the thin film, resulting in the particles making contact and sticking to the surface. The criteria for the slip-stick transition is presented, which can be used to design systems to promote or suppress slip for such suspensions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
