Debris flows are dense and fast-moving complex suspensions of soil and water that threaten lives and infrastructure. Assessing the hazard potential of debris flows requires predicting yield and flow behavior. Reported measurements of rheology for debris flow slurries are highly variable and sometimes contradictory due to heterogeneity in particle composition and volume fraction ( ϕ ) and also inconsistent measurement methods. Here we examine the composition and flow behavior of source materials that formed the postwildfire debris flows in Montecito, CA, in 2018, for a wide range of ϕ that encapsulates debris flow formation by overland flow. We find that shear viscosity and yield stress are controlled by the distance from jamming, Δ ϕ = ϕ m − ϕ , where the jamming fraction ϕ m is a material parameter that depends on grain size polydispersity and friction. By rescaling shear and viscous stresses to account for these effects, the data collapse onto a simple nondimensional flow curve indicative of a Bingham plastic (viscoplastic) fluid. Given the highly nonlinear dependence of rheology on Δ ϕ , our findings suggest that determining the jamming fraction for natural materials will significantly improve flow models for geophysical suspensions such as hyperconcentrated flows and debris flows.
more »
« less
Phase shift between joint rotation and actuation reflects dominant forces and predicts muscle activation patterns
Abstract During behavior, the work done by actuators on the body can be resisted by the body's inertia, elastic forces, gravity, or viscosity. The dominant forces that resist actuation have major consequences on the control of that behavior. In the literature, features and actuation of locomotion, for example, have been successfully predicted by nondimensional numbers (e.g. Froude number and Reynolds number) that generally express the ratio between two of these forces (gravitational, inertial, elastic, and viscous). However, animals of different sizes or motions at different speeds may not share the same dominant forces within a behavior, making ratios of just two of these forces less useful. Thus, for a broad comparison of behavior across many orders of magnitude of limb length and cycle period, a dimensionless number that includes gravitational, inertial, elastic, and viscous forces is needed. This study proposes a nondimensional number that relates these four forces: the phase shift (ϕ) between the displacement of the limb and the actuator force that moves it. Using allometric scaling laws, ϕ for terrestrial walking is expressed as a function of the limb length and the cycle period at which the limb steps. Scale-dependent values of ϕ are used to explain and predict the electromyographic (EMG) patterns employed by different animals as they walk.
more »
« less
- Award ID(s):
- 2015317
- PAR ID:
- 10468416
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- PNAS Nexus
- Volume:
- 2
- Issue:
- 10
- ISSN:
- 2752-6542
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The hydrodynamics of swimming at the millimeter-to-centimeter scale often present the challenge of having both viscous and inertial effects playing nontrivial roles. Inertial forces arise from the momentum of a moving fluid, while viscous forces come from friction within the flow. The non-dimensional Reynolds number (Re) compares the magnitudes of the inertial and viscous forces within a flow. At low Re (≪ 1), viscous forces dominate; at higher Re (≫ 1), inertial forces are more important. Efforts to understand the hydrodynamics of swimming have mainly focused on the extremes of fully viscous-dominated (Re ≪ 1) or inertia-dominated flow (Re ≫ 1). However, many animals swim in an intermediate regime, where inertia and viscosity are both significant. As an impactful and generalizable case study, we focus on ctenophores (comb jellies), a type of marine zooplankton. Ctenophores swim via the coordinated rowing of numerous highly flexible appendages (ctenes), with Reynolds numbers on the order of 10-100. Their locomotory dynamics present a unique opportunity to study the scaling of rowing (drag-based propulsion) across the low to intermediate Reynolds number range. With a combination of animal experiments, reduced-order analytical modeling, and physical-robotic modeling, we investigate how the kinematic and geometric variables of beating ctenes vary across Re, and how they affect swimming (including force production, speed, and maneuverability). Using animal experiments, we quantify the spatiotemporal asymmetry of beating ctenes across a wide range of animal sizes and Re. With our reduced-order model—the first to incorporate adequate formulations for the viscous-inertial nature of this regime—we explore the maneuverability and agility displayed by ctenophores, and show that by controlling the kinematics of their distributed appendages, ctenophores are capable of nearly omnidirectional swimming. Finally, we use a compliant robotic model that mimics ctenophore rowing kinematics to study rowing performance with direct calculation of thrust and lift forces distributed along the propulsor. These experiments shed new light on the relationship between motion asymmetries and thrust and lift production. This combination of animal experiments, analytical modeling, and physical modeling is the most detailed study of low to intermediate Re rowing to date, and provides a foundation for future applications in bio-inspired design.more » « less
-
A numerical investigation of an asymptotically reduced model for quasigeostrophic Rayleigh-Bénard convection is conducted in which the depth-averaged flows are numerically suppressed by modifying the governing equations. At the largest accessible values of the Rayleigh number Ra, the Reynolds number and Nusselt number show evidence of approaching the diffusion-free scalings of Re ∼ RaE/Pr and Nu ∼ Pr−1/2Ra3/2E2, respectively, where E is the Ekman number and Pr is the Prandtl number. For large Ra, the presence of depth-invariant flows, such as large-scale vortices, yield heat and momentum transport scalings that exceed those of the diffusion-free scaling laws. The Taylor microscale does not vary significantly with increasing Ra, whereas the integral length scale grows weakly. The computed length scales remain O(1) with respect to the linearly unstable critical wave number; we therefore conclude that these scales remain viscously controlled. We do not find a point-wise Coriolis-inertia-Archimedean (CIA) force balance in the turbulent regime; interior dynamics are instead dominated by horizontal advection (inertia), vortex stretching (Coriolis) and the vertical pressure gradient. A secondary, subdominant balance between the Archimedean buoyancy force and the viscous force occurs in the interior and the ratio of the root mean square (rms) of these two forces is found to approach unity with increasing Ra. This secondary balance is attributed to the turbulent fluid interior acting as the dominant control on the heat transport. These findings indicate that a pointwise CIA balance does not occur in the high Rayleigh number regime of quasigeostrophic convection in the plane layer geometry. Instead, simulations are characterized by what may be termed a nonlocal CIA balance in which the buoyancy force is dominant within the thermal boundary layers and is spatially separated from the interior Coriolis and inertial forces.more » « less
-
Abstract Synthetic materials that mimic the ability of natural occurring features to self‐actuate in response to different stimuli have wide applications in soft robotics, microdevices, drug delivery, regenerative medicine, and sensing. Here, unexpected and counter‐intuitive findings are presented in which a strongly polyelectrolytic hydrogel repels from strong polar solvents upon partial exposure (e.g., partial hydration by water). This repulsion drives the actuation and self‐folding of the gel, which results in rapid formation of different three‐dimensional shapes by simply placing the corresponding two‐dimensional films on water. A detailed investigation into the role of hydrogel chemistry, pH, and morphology on hydration‐triggered actuation behavior of the gels and their nanocomposites is described. Finally, a computational model is developed in order to further elucidate mechanisms of actuation. Modeling partial hydration as a repulsive driving force, it tracks the evolution of the shape of the thin film that results from restoring elastic forces. Taken together, the results indicate that an interplay between elastic and Coulombic repulsive forces leads to seemingly unexpected behavior of actuation of strongly polyelectrolytic gels away from polar solvents, leading to a novel and simple fabrication strategy for diverse 3D devices.more » « less
-
null (Ed.)We develop a mathematical model to capture the web dynamics of slingshot spiders (Araneae: Theridiosomatidae), which utilize a tension line to deform their orb webs into conical springs to hunt flying insects. Slingshot spiders are characterized by their ultrafast launch speeds and accelerations (exceeding 1300 m/s2, however a theoretical approach to characterize the underlying spatiotemporal web dynamics remains missing. To address this knowledge gap, we develop a 2D-coupled damped oscillator model of the web. Our model reveals three key insights into the dynamics of slingshot motion. First, the tension line plays a dual role: enabling the spider to load elastic energy into the web for a quick launch (in milliseconds) to displacements of 10–15 body lengths, but also enabling the spider to halt quickly, attenuating inertial oscillations. Second, the dominant energy dissipation mechanism is viscous drag by the silk lines - acting as a low Reynolds number parachute. Third, the web exhibits underdamped oscillatory dynamics through a finely-tuned balance between the radial line forces, the tension line force and viscous drag dissipation. Together, our work suggests that the conical geometry and tension-line enables the slingshot web to act as both an elastic spring and a shock absorber, for the multi-functional roles of risky predation and self-preservation.more » « less
An official website of the United States government
