This content will become publicly available on January 1, 2024
- Award ID(s):
- 2026847
- NSF-PAR ID:
- 10451139
- Date Published:
- Journal Name:
- Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Electron microscopy images of carbon nanotube (CNT) forests are difficult to segment due to the long and thin nature of the CNTs; density of the CNT forests resulting in CNTs touching, crossing, and occluding each other; and low signal-to-noise ratio electron microscopy imagery. In addition, due to image complexity, it is not feasible to prepare training segmentation masks. In this paper, we propose CNTSegNet, a dual loss, orientation-guided, self-supervised, deep learning network for CNT forest segmentation in scanning electron microscopy (SEM) images. Our training labels consist of weak segmentation labels produced by intensity thresholding of the raw SEM images and self labels produced by estimating orientation distribution of CNTs in these raw images. The proposed network extends a U-net-like encoder-decoder architecture with a novel two-component loss function. The first component is dice loss computed between the predicted segmentation maps and the weak segmentation labels. The second component is mean squared error (MSE) loss measuring the difference between the orientation histogram of the predicted segmentation map and the original raw image. Weighted sum of these two loss functions is used to train the proposed CNTSegNet network. The dice loss forces the network to perform background-foreground segmentation using local intensity features. The MSE loss guides the network with global orientation features and leads to refined segmentation results. The proposed system needs only a few-shot dataset for training. Thanks to it’s self-supervised nature, it can easily be adapted to new datasets.more » « less
-
While the physical properties of carbon nanotubes (CNTs) are often superior to conventional engineering materials, their widespread adoption into many applications is limited by scaling the properties of individual CNTs to macroscale CNT assemblies known as CNT forests. The self-assembly mechanics of CNT forests that determine their morphology and ensemble properties remain poorly understood. Few experimental techniques exist to characterize and observe the growth and self-assembly processes in situ. Here we introduce the use of in-situ scanning electron microscope (SEM) synthesis based on chemical vapor deposition (CVD) processing. In this preliminary report, we share best practices for in-situ SEM CVD processing and initial CNT forest synthesis results. Image analysis techniques are developed to identify and track the movement of catalyst nanoparticles during synthesis conditions. Finally, a perspective is provided in which in-situ SEM observations represent one component of a larger system in which numerical simulation, machine learning, and digital control of experiments reduces the role of humans and human error in the exploration of CNT forest process-structure-property relationships.more » « less
-
This paper presents a few comprehensive experimental studies for automated Structural Damage Detection (SDD) in extreme events using deep learning methods for processing 2D images. In the first study, a 152-layer Residual network (ResNet) is utilized to classify multiple classes in eight SDD tasks, which include identification of scene levels, damage levels, and material types. The proposed ResNet achieved high accuracy for each task while the positions of the damage are not identifiable. In the second study, the existing ResNet and a segmentation network (U-Net) are combined into a new pipeline, cascaded networks, for categorizing and locating structural damage. The results show that the accuracy of damage detection is significantly improved compared to only using a segmentation network. In the third and fourth studies, end-to-end networks are developed and tested as a new solution to directly detect cracks and spalling in the image collections of recent large earthquakes. One of the proposed networks can achieve an accuracy above 67 .6% for all tested images at various scales and resolutions, and shows its robustness for these human-free detection tasks. As a preliminary field study, we applied the proposed method to detect damage in a concrete structure that was tested to study its progressive collapse performance. The experiments indicate that these solutions for automatic detection of structural damage using deep learning methods are feasible and promising. The training datasets and codes will be made available for the public upon the publication of this paper.
-
null (Ed.)The success of supervised learning requires large-scale ground truth labels which are very expensive, time- consuming, or may need special skills to annotate. To address this issue, many self- or un-supervised methods are developed. Unlike most existing self-supervised methods to learn only 2D image features or only 3D point cloud features, this paper presents a novel and effective self-supervised learning approach to jointly learn both 2D image features and 3D point cloud features by exploiting cross-modality and cross-view correspondences without using any human annotated labels. Specifically, 2D image features of rendered images from different views are extracted by a 2D convolutional neural network, and 3D point cloud features are extracted by a graph convolution neural network. Two types of features are fed into a two-layer fully connected neural network to estimate the cross-modality correspondence. The three networks are jointly trained (i.e. cross-modality) by verifying whether two sampled data of different modalities belong to the same object, meanwhile, the 2D convolutional neural network is additionally optimized through minimizing intra-object distance while maximizing inter-object distance of rendered images in different views (i.e. cross-view). The effectiveness of the learned 2D and 3D features is evaluated by transferring them on five different tasks including multi-view 2D shape recognition, 3D shape recognition, multi-view 2D shape retrieval, 3D shape retrieval, and 3D part-segmentation. Extensive evaluations on all the five different tasks across different datasets demonstrate strong generalization and effectiveness of the learned 2D and 3D features by the proposed self-supervised method.more » « less
-
In the medical sector, three-dimensional (3D) images are commonly used like computed tomography (CT) and magnetic resonance imaging (MRI). The 3D MRI is a non-invasive method of studying the soft-tissue structures in a knee joint for osteoarthritis studies. It can greatly improve the accuracy of segmenting structures such as cartilage, bone marrow lesion, and meniscus by identifying the bone structure first. U-net is a convolutional neural network that was originally designed to segment the biological images with limited training data. The input of the original U-net is a single 2D image and the output is a binary 2D image. In this study, we modified the U-net model to identify the knee bone structures using 3D MRI, which is a sequence of 2D slices. A fully automatic model has been proposed to detect and segment knee bones. The proposed model was trained, tested, and validated using 99 knee MRI cases where each case consists of 160 2D slices for a single knee scan. To evaluate the model’s performance, the similarity, dice coefficient (DICE), and area error metrics were calculated. Separate models were trained using different knee bone components including tibia, femur, patella, as well as a combined model for segmenting all the knee bones. Using the whole MRI sequence (160 slices), the method was able to detect the beginning and ending bone slices first, and then segment the bone structures for all the slices in between. On the testing set, the detection model accomplished 98.79% accuracy and the segmentation model achieved DICE 96.94% and similarity 93.98%. The proposed method outperforms several state-of-the-art methods, i.e., it outperforms U-net by 3.68%, SegNet by 14.45%, and FCN-8 by 2.34%, in terms of DICE score using the same dataset.more » « less