Background and Context. Academic help-seeking is vital to post-secondary computing students’ effective learning. However, most empirical works in this domain study students’ help resource selection and utilization by aggregating the entire student body as a whole. Moreover, existing theoretical frameworks often implicitly assume that whether/how much a student seeks help from a specific resource only depends on context (the type of help needed and the properties of the resources), not the individual student. Objectives. To address the gap, we seek to investigate individual computing students’ help-seeking approaches by analyzing what help-seeking characteristics are individual-driven (and thus stay consistent for the same student across different course contexts) and what are context-driven. Method. We analyzed N = 597 students’ survey responses on their help resource utilization as well as their actual help-seeking records across 6 courses. We examined relations between individual students’ frequency-based help usage metrics, type-of-help requested in office/consulting hours, self-reported order of ideal help resource usage, and their collaboration inclination in small-scale sections. Findings. We found that students’ frequency-based help metrics and their order of ideal help resource usage stays relatively consistent across different course contexts, and thus may be treated as part of students’ individual help-seeking approaches. On the other hand, the type of help students seek in office/consulting hours and how much they collaborate with peers in small sections do not seem to stay consistent across different contexts and thus might be deemed more context-driven than individual-driven. Implications. Our findings reveal that part of students’ help-seeking characteristics is individual-driven. This opens up a possibility for institutions to track students’ help-seeking records in early/introductory courses, so that some preliminary understanding of students can be acquired before they enter downstream courses. Our insights may also help instructors identify which part of students’ help-seeking behavior are more likely to be influenced by their course context and design.
more »
« less
What Drives Students to Office Hours: Individual Differences and Similarities
Undergraduate teaching assistants (UTAs) office hours are an approachable way for students to get help, but little is known about why and for what do the students choose to attend office hours. We sought to understand what kind of help the students believe they need by analyzing the problem-solving step students self-reported when joining the office hours queue app. We used the UPIC framework to aggregate course specific problem-solving steps to enable comparing between seven data sets from a CS1 and a data science course across four semesters. We then compared the class-level and student-level phase distributions to understand the differences between the two courses and the two levels in the courses. We found most students have a "primary phase" where a majority of their interactions fall, and there are significant individual differences in their phase distributions. Moreover, we did not find either students' demographics or the context of their first visits to significantly impact their individual differences in the phase distributions, suggesting students may have fixed beliefs on how to approach office hours. Finally, a strong majority of interactions happen within 3 days of the deadline, such that the UPIC distribution for those days looks like the class-level phase distribution.
more »
« less
- Award ID(s):
- 1934965
- PAR ID:
- 10451166
- Date Published:
- Journal Name:
- 54th ACM Technical Symposium on Computer Science Education
- Volume:
- 1
- Page Range / eLocation ID:
- 959 to 965
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Jones, Dyan; Ryan, Qing X.; Pawl, Andrew (Ed.)Designing physics courses that support students' activation and development of expert-like physics epistemologies is a significant goal of Physics Education Research. However, very little research has focused on how physics students' interactions with course structures resonate with different epistemological views. As part of a course redesign effort to increase student success in introductory physics, we interviewed introductory physics students about their experiences with course structures and their learning and belonging beliefs. We present here a case from this broader data corpus in which a student, Robyn, discusses his epistemological views of physics problem solving and his experiences with physics lectures, office hours, and discussion sections. We find that Robyn's physics epistemology manifests consistently across his interactions with each of these different course structures, suggesting a possible resonance between students' beliefs and their experiences with course structures and the value of further investigation into the potential merits of comprehensive course design.more » « less
-
You asked, now what? Modeling Students’ Help-Seeking and Coding actions from Re- quest to ResolutionNigel Bosch; Antonija Mitrovic; Agathe Merceron (Ed.)Demand for education in Computer Science has increased markedly in recent years. With increased demand has come to an increased need for student support, especially for courses with large programming projects. Instructors commonly provide online post forums or office hours to address this massive demand for help requests. Identifying what types of questions students are asking in those interactions and what triggers their help requests can in turn assist instructors in better managing limited help-providing resources. In this study, we aim to explore students’ help-seeking actions from the two separate approaches we mentioned before and investigate their coding actions before help requests to understand better what motivates students to seek help in programming projects. We collected students’ help request data and commit logs from two Fall offerings of a CS2 course. In our analysis, we first believe that different types of questions should be related to different behavioral patterns. Therefore, we first categorized students’ help requests based on their content (e.g., Implementation, General Debugging, or Addressing Teaching Staff (TS) Test Failures). We found that General Debugging is the most frequently asked question. Then we analyzed how the popularity of each type of request changed over time. Our results suggest that implementation is more popular in the early stage of the project cycle, and it changes to General Debugging and Addressing TS Failures in the later stage. We also calculated the accuracy of students’ commit frequency one hour before their help requests; the results show that before Implementation requests, the commit frequency is significantly lower, and before TS failure requests, the frequency is significantly higher. Moreover, we checked before any help request whether students changed their source code or test code. The results show implementation requests related to higher chances of source code changes and coverage questions related to more test code changes. Moreover, we use a Markov Chain model to show students’ action sequences before, during, and after the requests. And finally, we explored students’ progress after the office hours interaction and found that over half of the students improved the correctness of their code after 20 minutes of their office hours interaction addressing TS failures ends.more » « less
-
In Computer Science (CS) education, instructors use office hours for one-on-one help-seeking. Prior work has shown that traditional in-person office hours may be underutilized. In response many instructors are adding or transitioning to virtual office hours. Our research focuses on comparing in-person and online office hours to investigate differences between performance, interaction time, and the characteristics of the students who utilize in-person and virtual office hours. We analyze a rich dataset covering two semesters of a CS2 course which used in-person office hours in Fall 2019 and virtual office hours in Fall 2020. Our data covers students' use of office hours, the nature of their questions, and the time spent receiving help as well as demographic and attitude data. Our results show no relationship between student's attendance in office hours and class performance. However we found that female students attended office hours more frequently, as did students with a fixed mindset in computing, and those with weaker skills in transferring theory to practice. We also found that students with low confidence in or low enjoyment toward CS were more active in virtual office hours. Finally, we observed a significant correlation between students attending virtual office hours and an increased interest in CS study; while students attending in-person office hours tend to show an increase in their growth mindset.more » « less
-
Merkle, Larry; Doyle, Maureen; Sheard, Judithe; Soh, Leen-Kiat; Dorn, Brian (Ed.)In Computer Science (CS) education, instructors use office hours for one-on-one help-seeking. Prior work has shown that traditional in-person office hours may be underutilized. In response many instructors are adding or transitioning to virtual office hours. Our research focuses on comparing in-person and online office hours to investigate differences between performance, interaction time, and the characteristics of the students who utilize in-person and virtual office hours. We analyze a rich dataset covering two semesters of a CS2 course which used in-person office hours in Fall 2019 and virtual office hours in Fall 2020. Our data covers students' use of office hours, the nature of their questions, and the time spent receiving help as well as demographic and attitude data. Our results show no relationship between student's attendance in office hours and class performance. However we found that female students attended office hours more frequently, as did students with a fixed mindset in computing, and those with weaker skills in transferring theory to practice. We also found that students with low confidence in or low enjoyment toward CS were more active in virtual office hours. Finally, we observed a significant correlation between students attending virtual office hours and an increased interest in CS study; while students attending in-person office hours tend to show an increase in their growth mindset.more » « less