skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparison of Single-Pass Differential Speed Rolling (DSR) and ConventionalRolling (CR) on the Microstructure and Mechanical Properties ofMg5Zn
Background: The primary hot rolling method implemented is differential speed rolling(DSR). The material is rolled and grains are strained, producing fine dynamic recrystallization(DRX) grains that improve material strength and ductility. Objective: The material introduced and under investigation in this paper is an Mg-based alloy,Mg5Zn (wt. %), whose microstructure is enhanced through a combination of heat treatments withproper temperature and holding time and subsequent plastic deformation through hot rolling toevaluate the effect on mechanical properties Methods: The method involves preheating the material to various temperatures in a range from250ºC to 350ºC and rolling to various thickness reductions to analyze the effect of single-pass differentialspeed rolling (DSR) and conventional rolling (CR) on the DRX process and its influenceon mechanical properties. Results: The effect of single-pass differential speed rolling (DSR) and conventional rolling (CR)on the DRX process shows that the process produces increasing amounts of finer DRX grains athigher rolling reductions, thereby improving the strength and ductility of the material. Conclusion: This investigation demonstrated that single-pass DSR can improve the mechanicalproperties and formability of Mg5Zn more effectively than CR in terms of grain refinement analyzedthrough OM, SEM, and EBSD resulting in enhanced tensile strength and ductility [1].  more » « less
Award ID(s):
2026313
PAR ID:
10451184
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Current Materials Science
Volume:
16
Issue:
4
ISSN:
2666-1454
Page Range / eLocation ID:
431 to 442
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Conventional rolling is a plastic deformation process that uses compression between two rolls to reduce material thickness and produce sheet/plane geometries. This deformation process modifies the material structure by generating texture, reducing the grain size, and strengthening the material. The rolling process can enhance the strength and hardness of lightweight materials while still preserving their inherent lightness. Lightweight metals like magnesium alloys tend to lack mechanical strength and hardness in load-bearing applications. The general rolling process is controlled by the thickness reduction, velocity of the rolls, and temperature. When held at a constant thickness reduction, each pass through the rolls introduces an increase in strain hardening, which could ultimately result in cracking, spallation, and other defects. This study is designed to optimize the rolling process by evaluating the effects of the strain rate, rather than the thickness reduction, as a process control parameter. 
    more » « less
  2. Dilute Mg alloys based upon earth-abundant elements, e.g., Al, Ca, and Zn have attractive combinations of strength, ductility, and workability. Even higher strength can be obtained in work-hardened material without the heat treatments required to induce Guinier-Preston zone strengthening of previously studied versions of these alloys. This stems from a slightly stronger crystallographic texture than is present after solutionizing, a high dislocation density, and to a lesser degree, a fine distribution of globular Zn-rich precipitates. The anisotropic plastic response of sheet material is described using an elasto-viscoplastic self-consistent (EVPSC) polycrystal model. Strain partitioning between grains during rolling-induced strain hardening is held responsible for the yield strength, ductility, and especially, strain hardening anisotropy. Texture-induced plastic anisotropy is well- known, but the effect of strong partitioning of strain between variously oriented grains is critical to explain what may be classified as a sort of strain path change (generalized Bauschinger) effect. 
    more » « less
  3. This investigation systematically examines the influence of sintering temperature and aging treatment on the density, microstructure evolution, phase formation, and mechanical properties of a binder jet printed Co-Cr-Mo biomedical alloy. Sintering at 1380 °C for 2 h yielded a near-fully dense part (99.1%) with favorable mechanical properties (up to 325 HV0.1 hardness and up to 693 MPa ultimate tensile strength). The grain size remained unchanged after aging at 800 °C for 24 h (89 ± 21 µm). Aging resulted in increased microhardness and tensile strength due to phase formation (Cr23C6, CrMo, and ε phase), but a significant decrease in ductility. Consequently, the sintered and aged specimen exhibited higher hardness (522 HV0.1), yield strength (641 MPa), and ultimate tensile strength (854 MPa) compared to cast Co-Cr-Mo alloy. Biocompatibility testing with fibroblasts showed a cell viability of 95 ± 2%, indicating that binder jet printing did not affect the biocompatibility of the Co-Cr-Mo alloy. Exemplary printed parts including hip-joint, partial denture, and small-scale knee joint were successfully demonstrated. This study highlights the comparable properties of binder jet Co-Cr-Mo alloy to the cast alloy, affirming its potential for biomedical applications. 
    more » « less
  4. Selective laser melting (SLM) is one of the most widely used additive manufacturing technologies. Fabricating nickel-based superalloys with SLM has garnered significant interest from the industry and the research community alike due to the excellent high temperature properties and thermal stability exhibited by the alloys. Haynes-282 alloy, a γ′-phase strengthened Ni-based superalloy, has shown good high temperature mechanical properties comparable to alloys like R-41, Waspaloy, and 263 alloy but with better fabricability. A study and comparison of the effect of different heat-treatment routes on microstructure and mechanical property evolution of Haynes-282 fabricated with SLM is lacking in the literature. Hence, in this manuscript, a thorough investigation of microstructure and mechanical properties after a three-step heat treatment and hot isostatic pressing (HIP) has been conducted. In-situ heat-treatment experiments were conducted in a transmission electron microscopy (TEM) to study γ′ precipitate evolution. γ′ precipitation was found to start at 950 °C during in-situ heat-treatment. Insights from the in-situ heat-treatment were used to decide the aging heat-treatment for the alloy. The three-step heat-treatment was found to increase yield strength (YS) and ultimate tensile strength (UTS). HIP process enabled γ′ precipitation and recrystallization of grains of the as-printed samples in one single step. 
    more » « less
  5. Gas metal arc additive manufacturing (GMA-AM), also known as wire arc additive manufacturing (WAAM), uses an electric arc to melt a wire electrode and deposit objects layer by layer. This study focuses on creating single-pass wall structures using a low-carbon steel wire (ER70S-6) and examining the relationship between pulse frequency and weld geometry, microstructure, and mechanical properties. Microscopic observations showed a typical columnar microstructure with three distinct regions: acicular ferrite, bainite, and allotriomorphic ferrite in the first and last layers, while the mid-region exhibited homogenous polygonal ferrite grains with some pearlite at the grain boundaries. The tensile test results demonstrated a dependency of strength on the applied pulse frequency, with the highest strength (i.e., the ultimate tensile strength of 522 MPa and yield strength of 375 MPa with ductility of ∼52%) achieved in parts processed at a frequency of 100 Hz. Vickers microhardness values revealed uniform hardness in the middle region, consistent with the microstructure observation. Analyzing thermal cycles, coupled with microstructure analysis and continuous cooling transition diagrams, provided insight into how phase and microstructure evolution occurred in low-carbon low-alloy steels processed through PGMA-AM. 
    more » « less