This innovative-practice work-in-progress paper explores student leadership development over multiple semesters in team-structured project-based courses. While student growth is expected in a single semester, the study asks if multiple semesters of participation lead to continued leadership growth, and if so, over how many semesters of participation growth continues. The study examined peer evaluation ratings in general leadership (coordination of teams’ work) and technical leadership (serving as a technical/content area leader) in a single semester of Georgia Tech’s Vertically Integrated Projects (VIP) Program, a multidisciplinary, multi-semester, team-structured, projectbased, and credit-bearing program in which student teams support faculty research. Analysis examined means and distributions on two peer evaluation questions (N = 1,073 and N = 1,047) by student academic rank and number of semesters of participation in the program. Findings indicate that within their teams, students’ leadership increased through the third semester, with students making their greatest leadership contributions in the third semester and beyond; and students of lower academic rank provided as much leadership (including technical leadership) as older students who had comparable experience on the team. Both the VIP model and the operationalization of leadership represent innovative practices, because the VIP model yields measurable gains in student leadership, and the measurement of student leadership is based on peer-evaluations instead of self-assessments. The educational model and research in this paper are aligned with the FIE values of encouraging mentorship and professional growth, appreciating multidisciplinary approaches, valuing new approaches, and generating new knowledge. The paper addresses limitations and next steps for the study.
more »
« less
Work in Progress: Implementing a Tiger Team in a Capstone Design Course
This paper reports on the initial implementation of a two student “tiger team” in an engineering capstone design class. A tiger team is a small group of individuals that covers a range of expertise and is assigned when challenges arise that helps address the root issues causing the challenge. The term was coined in the 1960’s in the Cold War; tiger teams are used in industry, government, and military organizations. While tiger teams in these situations are usually formed around an issue then disbanded, in the capstone class the tiger team was formed for the duration of the two semester long class; details on formation and the larger context and organization of the class are discussed in the paper. The rationale for the tiger team was the observation over many years of a capstone class that as projects are functionally decomposed and subsystems assigned to individual students, a not insignificant fraction of students become “stuck” at some point in time – the concept of “stuckness” is further derived in the full paper. The result is that if delays accumulate on critical parts of the project, teams often struggle to get the project back on track and end up with a cascading series of missed deadlines. The rationale for the tiger team is to help teams identify when parts of the project are getting behind schedule and to have additional, short-term help available. In the initial implementation described here, the tiger team was two students—one from electrical and one from computer engineering—who volunteered for the position and were confirmed in that role by the other students in the class. Initial data shows that during the problem identification phase of the project the tiger team attended team meetings, helped evaluation project milestone reviews, worked to solve individual and team issues, and regularly met with the faculty. Early in the semester the two tiger team students described their role as unclear and worried their technical exposure would be limited. Later, as the teams developed technical representations, the tiger team provided independent feedback and addressed multiple technical challenges. Finally, as teams started to build technical prototypes the tiger team role again shifted to helping individuals with specific aspects of their project; this role continued throughout the remainder of the year-long course. This in-depth case-study of the experience of implementing a tiger team draws on observations from students, faculty, the tiger team members, and an external ethnographer. This work may help other capstone instructors who may be considering similar interventions.
more »
« less
- Award ID(s):
- 2022271
- PAR ID:
- 10451259
- Date Published:
- Journal Name:
- ASEE Annual Conference proceedings
- ISSN:
- 1524-4644
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This work in progress paper presents a study that follows four engineering capstone teams over the course of their two-year projects. Students on four different teams collected ethnographic and autoethnographic data in the form of field notes to explore how students learn across a variety of projects that vary in their scope, type, and team composition. This paper aims to explain the impacts that role rigidity and project management style have on the design process and discuss the factors that influence the types of learning occurring in capstone teams. Data suggest that project scope, role rigidity, and the level of ambiguity in the project impact the learning processes employed by different teams, and the skills that team members developed.more » « less
-
Primary barriers to the adoption of team-based learning in higher education pertain to classroom management difficulties regarding the large class size, no access to physical infrastructure, and the lack of implementation of student-centered pedagogical approaches. To overcome these challenges, this study proposes the use of collaborative technological environments in conjunction with teamwork pedagogy. The study investigates this approach by comparing two implementations of a large-size undergraduate course: (a) thein-personmode when an active learning classroom was assigned to the course, and (b) theblendedmode when a portion of traditional face-to-face instruction was replaced with web-based online learning to facilitate teamwork interactions. The study used the Team Learning Model to characterize students’ beliefs about their collaborative and social processes as they worked in teams as part of a semester-long project. The results indicated that students exhibited positive attitudes toward teamwork regardless of the delivery mode, with only affective connectedness showing significant differences between the two semesters for the initial survey rounds. However, this difference was no longer present in the later survey rounds, suggesting that the blended learning environment was successful in addressing social interaction and had a similar effect on students’ team-based learning when teaching in-person. Implications relate to the demonstration of the design of a collaborative technological learning environment and the integration of team-based pedagogies to facilitate socialization processes in large class size settings.more » « less
-
Team building activities are popular interventions during early stages of team development. At RIT, in the multidisciplinary capstone course with an average cohort size of around 350, the students on a particular capstone project team may not be mutually acquainted and thus may benefit from such team building activities. Prior literature has studied the effectiveness of various instructor-directed team building activities on student teams. However, our students are generally eager to spend class time working on their projects and often see in-class activities as a distraction rather than an important part of their growth. Instead, the student teams are now allowed to choose an intervention based on team consensus. In this paper, the relationship between attributes of the chosen intervention and student performance, as measured using a series of AACU VALUE rubrics, was studied using statistical measures. The analysis revealed a statistically significant effect of type of team building activity on teamwork, oral communication, and design & problem solving scores of individual students on the team. Also, a statistically significant effect of location of team building activity (on or off campus) on design & problem solving score was observed.more » « less
-
null (Ed.)Many university engineering programs require their students to complete a senior capstone experience to equip them with the knowledge and skills they need to succeed after graduation. Such capstone experiences typically integrate knowledge and skills learned cumulatively in the degree program, often engaging students in projects outside of the classroom. As part of an initiative to completely transform the civil engineering undergraduate program at Clemson University, a capstone-like course sequence is being incorporated into the curriculum during the sophomore year. Funded by a grant from the National Science Foundation’s Revolutionizing Engineering Departments (RED) program, this departmental transformation (referred to as the Arch initiative) is aiming to develop a culture of adaptation and a curriculum support for inclusive excellence and innovation to address the complex challenges faced by our society. Just as springers serve as the foundation stones of an arch, the new courses are called “Springers” because they serve as the foundations of the transformed curriculum. The goal of the Springer course sequence is to expose students to the “big picture” of civil engineering while developing student skills in professionalism, communication, and teamwork through real-world projects and hands-on activities. The expectation is that the Springer course sequence will allow faculty to better engage students at the beginning of their studies and help them understand how future courses contribute to the overall learning outcomes of a degree in civil engineering. The Springer course sequence is team-taught by faculty from both civil engineering and communication, and exposes students to all of the civil engineering subdisciplines. Through a project-based learning approach, Springer courses mimic capstone in that students work on a practical application of civil engineering concepts throughout the semester in a way that challenges students to incorporate tools that they will build on and use during their junior and senior years. In the 2019 spring semester, a pilot of the first of the Springer courses (Springer 1; n=11) introduced students to three civil engineering subdisciplines: construction management, hydrology, and transportation. The remaining subdisciplines will be covered in a follow-on Springer 2 pilot.. The project for Springer 1 involved designing a small parking lot for a church located adjacent to campus. Following initial instruction in civil engineering topics related to the project, students worked in teams to develop conceptual project designs. A design charrette allowed students to interact with different stakeholders to assess their conceptual designs and incorporate stakeholder input into their final designs. The purpose of this paper is to describe all aspects of the Springer 1 course, including course content, teaching methods, faculty resources, and the design and results of a Student Assessment of Learning Gains (SALG) survey to assess students’ learning outcomes. An overview of the Springer 2 course is also provided. The feedback from the SALG indicated positive attitudes towards course activities and content, and that students found interaction with project stakeholders during the design charrette especially beneficial. Challenges for full scale implementation of the Springer course sequence as a requirement in the transformed curriculum are also discussed.more » « less
An official website of the United States government

