skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Laplace Method for Energy Eigenvalue Problems in Quantum Mechanics
Quantum mechanics has about a dozen exactly solvable potentials. Normally, the time-independent Schrödinger equation for them is solved by using a generalized series solution for the bound states (using the Fröbenius method) and then an analytic continuation for the continuum states (if present). In this work, we present an alternative way to solve these problems, based on the Laplace method. This technique uses a similar procedure for the bound states and for the continuum states. It was originally used by Schrödinger when he solved the wave functions of hydrogen. Dirac advocated using this method too. We discuss why it is a powerful approach to solve all problems whose wave functions are represented in terms of confluent hypergeometric functions, especially for the continuum solutions, which can be determined by an easy-to-program contour integral.  more » « less
Award ID(s):
1915130
PAR ID:
10451269
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Quantum Reports
Volume:
5
Issue:
2
ISSN:
2624-960X
Page Range / eLocation ID:
370 to 397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Using a flexible form for ladder operators that incorporates confluent hypergeometric functions, we show how one can determine all of the discrete energy eigenvalues and eigenvectors of the time-independent Schrödinger equation via a single factorization step and the satisfaction of boundary (or normalizability) conditions. This approach determines the bound states of all exactly solvable problems whose wavefunctions can be expressed in terms of confluent hypergeometric functions. It is an alternative that shares aspects of the conventional differential equation approach and Schrödinger’s factorization method, but is different from both. We also explain how this approach relates to Natanzon’s treatment of the same problem and illustrate how to numerically determine nontrivial potentials that can be solved this way. 
    more » « less
  2. The factorization method was introduced by Schrödinger in 1940. Its use in bound-state problems is widely known, including in supersymmetric quantum mechanics; one can create a factorization chain, which simultaneously solves a sequence of auxiliary Hamiltonians that share common eigenvalues with their adjacent Hamiltonians in the chain, except for the lowest eigenvalue. In this work, we generalize the factorization method to continuum energy eigenstates. Here, one does not generically have a factorization chain—instead all energies are solved using a “single-shot factorization”, enabled by writing the superpotential in a form that includes the logarithmic derivative of a confluent hypergeometric function. The single-shot factorization approach is an alternative to the conventional method of “deriving a differential equation and looking up its solution”, but it does require some working knowledge of confluent hypergeometric functions. This can also be viewed as a method for solving the Ricatti equation needed to construct the superpotential. 
    more » « less
  3. In some sense, quantum mechanics solves all the problems in chemistry: The only thing one has to do is solve the Schrödinger equation for the molecules of interest. Unfortunately, the computational cost of solving this equation grows exponentially with the number of electrons and for more than ~100 electrons, it is impossible to solve it with chemical accuracy (~ 2 kcal/mol). The Kohn-Sham (KS) equations of density functional theory (DFT) allow us to reformulate the Schrödinger equation using the electronic probability density as the central variable without having to calculate the Schrödinger wave functions. The cost of solving the Kohn-Sham equations grows only as N3, where N is the number of electrons, which has led to the immense popularity of DFT in chemistry. Despite this popularity, even the most sophisticated approximations in KS-DFT result in errors that limit the use of methods based exclusively on the electronic density. By using fragment densities (as opposed to total densities) as the main variables, we discuss here how new methods can be developed that scale linearly with N while providing an appealing answer to the subtitle of the article: What is the shape of atoms in molecules 
    more » « less
  4. Abstract The Morse potential is an important problem to examine due to its applications in describing vibrations and bond breaking in molecules. It also shares some properties with the simpler harmonic oscillator, at the same time displaying differences, allowing for an interesting contrast to its well-studied counterpart. The solution of the Morse potential is not usually taught in a quantum mechanics class, since using differential equations makes it very tedious. Here, we illustrate how to solve the Morse potential using the Schrödinger factorization method. This operator method is a powerful tool to find the energy eigenvalues, eigenstates, and wavefunctions without using differential equations in position space, allowing us to solve more problems without requiring a discussion of hypergeometric or confluent hypergeometric functions. 
    more » « less
  5. Summary A method is developed to numerically solve chance constrained optimal control problems. The chance constraints are reformulated as nonlinear constraints that retain the probability properties of the original constraint. The reformulation transforms the chance constrained optimal control problem into a deterministic optimal control problem that can be solved numerically. The new method developed in this paper approximates the chance constraints using Markov Chain Monte Carlo sampling and kernel density estimators whose kernels have integral functions that bound the indicator function. The nonlinear constraints resulting from the application of kernel density estimators are designed with bounds that do not violate the bounds of the original chance constraint. The method is tested on a nontrivial chance constrained modification of a soft lunar landing optimal control problem and the results are compared with results obtained using a conservative deterministic formulation of the optimal control problem. Additionally, the method is tested on a complex chance constrained unmanned aerial vehicle problem. The results show that this new method can be used to reliably solve chance constrained optimal control problems. 
    more » « less