The Landau–Zener problem, where a minimum energy separation is passed with constant rate in a twostate quantummechanical system, is an excellent model quantum system for a computational project. It requires a lowlevel computational effort, but has a number of complex numerical and algorithmic issues that can be resolved through dedicated work. It can be used to teach computational concepts, such as accuracy, discretization, and extrapolation, and it reinforces quantum concepts of timeevolution via a timeordered product and of extrapolation to infinite time via timedependent perturbation theory. In addition, we discuss the concept of compression algorithms, which are employed in many advanced quantum computing strategies, and easy to illustrate with the Landau–Zener problem.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.


The free expansion of a Gaussian wavepacket is a problem commonly discussed in undergraduate quantum classes by directly solving the timedependent Schrödinger equation as a differential equation. In this work, we provide an alternative way to calculate the free expansion by recognizing that the Gaussian wavepacket can be thought of as the ground state of a harmonic oscillator with its frequency adjusted to give the initial width of the Gaussian, and the time evolution, given by the freeparticle Hamiltonian, being the same as the application of a timedependent squeezing operator to the harmonic oscillator ground state. Operator manipulations alone (including the Hadamard lemma and the exponential disentangling identity) then allow us to directly solve the problem. As quantum instruction evolves to include more quantum information science applications, reworking this wellknown problem using a squeezing formalism will help students develop intuition for how squeezed states are used in quantum sensing.more » « less

Quantum mechanics has about a dozen exactly solvable potentials. Normally, the timeindependent Schrödinger equation for them is solved by using a generalized series solution for the bound states (using the Fröbenius method) and then an analytic continuation for the continuum states (if present). In this work, we present an alternative way to solve these problems, based on the Laplace method. This technique uses a similar procedure for the bound states and for the continuum states. It was originally used by Schrödinger when he solved the wave functions of hydrogen. Dirac advocated using this method too. We discuss why it is a powerful approach to solve all problems whose wave functions are represented in terms of confluent hypergeometric functions, especially for the continuum solutions, which can be determined by an easytoprogram contour integral.more » « less

Abstract In this work, we describe strategies and provide casestudy activities that can be used to examine the properties of superposition, entanglement, tagging, complementarity, and measurement in quantum curricula geared for teacher training. Having a solid foundation in these conceptual ideas is critical for educators who will be adopting quantum ideas within the classroom. Yet they are some of the most difficult concepts to master. We show how one can systematically develop these conceptual foundations with thought experiments on light and with thought experiments that employ the SternGerlach experiment. We emphasize the importance of computer animations in aiding the instruction on these concepts.more » « less

The factorization method was introduced by Schrödinger in 1940. Its use in boundstate problems is widely known, including in supersymmetric quantum mechanics; one can create a factorization chain, which simultaneously solves a sequence of auxiliary Hamiltonians that share common eigenvalues with their adjacent Hamiltonians in the chain, except for the lowest eigenvalue. In this work, we generalize the factorization method to continuum energy eigenstates. Here, one does not generically have a factorization chain—instead all energies are solved using a “singleshot factorization”, enabled by writing the superpotential in a form that includes the logarithmic derivative of a confluent hypergeometric function. The singleshot factorization approach is an alternative to the conventional method of “deriving a differential equation and looking up its solution”, but it does require some working knowledge of confluent hypergeometric functions. This can also be viewed as a method for solving the Ricatti equation needed to construct the superpotential.more » « less

We generalize Schrödinger’s factorization method for Hydrogen from the conventional separation into angular and radial coordinates to a Cartesianbased factorization. Unique to this approach is the fact that the Hamiltonian is represented as a sum over factorizations in terms of coupled operators that depend on the coordinates and momenta in each Cartesian direction. We determine the eigenstates and energies, the wavefunctions in both coordinate and momentum space, and we also illustrate how this technique can be employed to develop the conventional confluent hypergeometric equation approach. The methodology developed here could potentially be employed for other Hamiltonians that can be represented as the sum over coupled Schrödinger factorizations.more » « less

The confluent hypergeometric equation, also known as Kummer's equation, is one of the most important differential equations in physics, chemistry, and engineering. Its two power series solutions are the Kummer function, M(a,b,z), often referred to as the confluent hypergeometric function of the first kind, and M ≡ z1bM(1+ab, 2b,z), where a and b are parameters that appear in the differential equation. A third function, the Tricomi function, U(a,b,z), sometimes referred to as the confluent hypergeometric function of the second kind, is also a solution of the confluent hypergeometric equation that is routinely used. Contrary to common procedure, all three of these functions (and more) must be considered in a search for the two linearly independent solutions of the confluent hypergeometric equation. There are situations, when a, b, and a  b are integers, where one of these functions is not defined, or two of the functions are not linearly independent, or one of the linearly independent solutions of the differential equation is different from these three functions. Many of these special cases correspond precisely to cases needed to solve problems in physics. This leads to significant confusion about how to work with confluent hypergeometric equations, in spite of authoritative references such as the NIST Digital Library of Mathematical Functions. Here, we carefully describe all of the different cases one has to consider and what the explicit formulas are for the two linearly independent solutions of the confluent hypergeometric equation. The procedure to properly solve the confluent hypergeometric equation is summarized in a convenient table. As an example, we use these solutions to study the bound states of the hydrogenic atom, correcting the standard treatment in textbooks. We also briefly consider the cutoff Coulomb potential. We hope that this guide will aid physicists to properly solve problems that involve the confluent hypergeometric differential equation.more » « less