skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cultivating Qualitative Researchers: Lessons Learned During a Pandemic
Under the best of circumstances, learning to conduct qualitative research is challenging, both intellectually and emotionally. Engaging in such learning in difficult situations, such as a global pandemic, may heighten challenges while creating opportunities for truly deep learning. The purpose of this paper is to provide methodological insights to guide the growth of new qualitative researchers and inform the design of introductory methods courses based on the learning experiences of a group of graduate students conducting their first qualitative research projects. We present students’ experiences with choosing and planning a project, navigating relationships with study participants, and conducting observations and interviews. Explicit connections to qualitative methodology are offered for every stage of student research engagement. An analysis of the student authors’ experiences highlights the associated learning and innovation necessary to adapt to adversity when conducting qualitative research. Advancements in research reciprocity and human connection are presented, as experienced by the student authors. We conclude with implications and insights for teaching and learning qualitative research and ethical considerations that transcend pandemic circumstances. It is the intent of this manuscript to support the development of deep reflexive practice for new qualitative researchers, effective instructional approaches for those who teach research methods, and an insight into the power of diverse student researchers learning new skills together for the global research community.  more » « less
Award ID(s):
1828902
PAR ID:
10451674
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
International Journal of Qualitative Methods
Volume:
22
ISSN:
1609-4069
Page Range / eLocation ID:
160940692311577
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Student research in STEM education is an important learning component for both undergraduate and graduate students. It is not sufficient for students to learn passively in lecture-based classrooms without engaging and immersing themselves in the educational process through real-world research learning. Experiential learning for STEM students can involve conducting research, alongside and through the guidance of their professors, early in a student’s undergraduate or graduate program. The authors consider such experiences to be the hallmark of a high-quality STEM education and something every student, undergraduate and graduate, should have during the course of their programs. The purpose of this case study is to document the faculty authors’ experiences in student-faculty research and provide guidance and recommendations for best practices based upon the authors’ experience, data, and literature findings. Moreover, the study presents the experience of the faculty authors’ international student researchers in STEM with focus on two student researchers, one undergraduate and one graduate, who are international STEM. The students served as co-authors on this project. Findings from this case study indicate that students were highly engaged in the research process and found these skills valuable preparation for further study and career. Moreover, the students expressed enthusiasm and engagement for the research process. 
    more » « less
  2. Miller, Eva (Ed.)
    The recent outbreak of COVID-19, considered as being a lethal pandemic by the World Health Organization, has caused profound changes in the educational system within the U.S and across the world. Overnight, universities and their educators had to switch to a largely online teaching format, which challenged their capacity to deliver learning content effectively to STEM students. Students were forced to adapt to a new learning environment in the midst of challenges in their own lives due to the COVID-19 effects on society and professional expectations. The main purpose of this paper is to investigate faculty perceptions of STEM student experiences during COVID-19. Through a qualitative methodology consisting of one-hour zoom interviews administered to 32 STEM faculty members from six U.S. Universities nationwide, faculty narratives regarding student and faculty experiences during COVID-19 were obtained. The qualitative research approach involved identifying common themes across faculty experiences and views in these narratives. Some of the categories of emerging themes associated with faculty perceptions on student and faculty experiences included: student struggles and challenges, student cheating and the online environment, faculty and student adaptability, faculty and student needs and support, and university resources and support. Best practices to facilitate online teaching and learning employed by STEM faculty were also discussed. Key findings revealed that students and faculty had both positive and negative experiences during COVID-19. Additionally, there was a greater need for consistent policies to improve the online student learning experiences. Recommendations to improve STEM student experiences include increased institutional resources and collaboration between faculty and the university administrators to provide a coherent online learning environment. Preliminary findings also provide insights to enhance institutional adaptability and resilience for improving STEM student experiences during future pandemics. Future research should continue to explore institutional adaptation strategies that enhance STEM student learning during pandemics. 
    more » « less
  3. Lisa Benson (Ed.)
    Abstract Background In Spring 2020, the COVID-19 pandemic sent universities into emergency remote education. The pandemic has been disruptive but offers the opportunity to learn about ways to support students in other situations where abrupt changes to teaching and learning are necessary. Purpose/Hypothesis We described the responses of engineering and computer science students to a series of prompts about their experiences with remote learning. Design/Method Data about students' remote learning experiences were collected from undergraduate engineering and computer science students at four different universities through an end-of-semester survey. Descriptive statistics were calculated, and qualitative responses were analyzed using qualitative content analysis through the lenses of master narrative theory and sociocultural theory. Results Student responses revealed how their individual circumstances combined to reduce motivation, create home environments detrimental to completing schoolwork, and increase stress. Many students described the negative impacts of remote learning, but some students found positive aspects of the situation. The majority of students did not indicate a change in their desire or plans to pursue engineering or computer science majors. Conclusions There was wide variation in how students experienced the disruption to university learning during Spring 2020. Implications of this paper can help not only in cases where emergency remote learning is needed in the future but also as universities seek to return to “normal” operations in 2022 and beyond. 
    more » « less
  4. Miller, Eva (Ed.)
    Professor-student interactions influence student learning experiences and performance. The COVID pandemic transformed STEM learning environments across U.S. institutions; however, its impact on STEM professor-student interactions and STEM student learning experiences are yet to be understood. The purpose of this nationwide inductive research study is to examine the impact of COVID-19 on professor-student interactions, undergraduate STEM student learning, and STEM student performance. To achieve this, a qualitative method is adopted and purposive sampling is utilized to enroll 63 STEM students from six U.S institutions. Data is collected through one-hour ZOOM interviews, giving students the opportunity to narrate their STEM learning experiences and performance during the COVID-19 pandemic. The data is analyzed using the NVIVO qualitative analysis software for coding, categorizing, memo-ing, and constant comparative analysis. Results reveal emergent codes on the STEM professor-student interactions to include professor leniency, caring attitude, availability, communication, instruction style, teaching resources, technology literacy, camera on/off requirements, live/recorded sessions, time zone, and student workload. Limited positive impacts on student learning include improved familiarity with alternate STEM learning resources and development of virtual learning soft skills. Negative learning experiences are extensive and coded as: poor comprehension, keeping up, overdrive, isolation, lowered motivation, schedule conflicts, and anxiety. Consequently, students made adaptation decisions coded as: alternate learning sources, refined scheduling, community support, preferring teaching assistants, working out, reporting professors, procrastination, and tuning out. While proactive students and students with prior virtual learning experiences improved or maintained their grades, many students opted for the pass/fail grade or complete withdrawal due to poor STEM learning and performance. Findings indicate that while STEM professors were adjusting to modified teaching environments, many STEM students were developing a sense of independence, self-study, and peer reliance to improve their own STEM understanding and performance with minimal reliance on STEM professors. Lessons learned and best practices for professor-student interactions and student learning are recommended for potential replication in STEM communities for improved adaptability and resiliency during future pandemics. Future research will focus on measuring the effect of best practices on professor-student interactions, student learning experiences, and performance. 
    more » « less
  5. Olanoff, D; Johnson, K.; Spitzer, S (Ed.)
    The COVID-19 pandemic has ravaged onward over the last year and has greatly impacted student learning. An average student is predicted to fall behind approximately seven months academically; however, this learning gap predicts Latinx and Black students will fall behind by 9 and 10 months, respectively (Seiden, 2020). Moreover, the shift to online instruction impacted students’ ability to learn as they encountered new stressors, anxiety, illness, and the pandemic’s psychological effects (Middleton, 2020). Despite the unprecedented circumstances that students were precipitously thrust into, state testing and assessments continue. Assessments during the pandemic are likely to produce invalid results due to “test pollution,” which refers to the systemic “increase or decrease in test scores unrelated to the content domain” (Middleton, 2020, p. 2). Considering the global pandemic, test pollution is prominent and worth exploring as it is uncertain whether state testing can identify the impact COVID is having on student learning. 
    more » « less