skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Early-Age Cracking Behavior of Concrete Slabs with GFRP Reinforcement
This paper reports on a combined experimental and numerical modeling investigation of cracking of concrete slabs with GFRP reinforcement. At this stage of the project, attention is given to early-age cracking driven by plastic shrinkage, preceding longer term considerations of cracking resistance over the service life of field applications. Of interest is the effectiveness of GFRP reinforcement in restricting plastic shrinkage cracking. Nine small-scale slab specimens were subjected to controlled evaporation rates. Images of crack development were acquired periodically, from which crack width estimations were made. Comparisons were made between slabs reinforced with conventional steel and those reinforced with GFRP, along with control specimens lacking reinforcement. During the period of plastic shrinkage, the time of crack initiation and subsequent crack openings do not appear to be influenced by the presence of the reinforcing bars. To understand this behavior, six early-age bond tests were conducted for both types of the bars after 1, 2, and 3 h exposure to the controlled evaporation rate. In addition, concrete strength development and time of settings were measured using penetration resistance tests on a representative mortar. The numerical modeling component of this research is based on a Voronoi cell lattice model; in this approach, the relative humidity, temperature, and displacement fields are discretized in three-dimensions, allowing for a comprehensive investigation of material behavior within the controlled environment. Based on the measured bond properties, our simulations confirm that the reinforcing bars restrict crack development, though they do not prevent it entirely.  more » « less
Award ID(s):
1916342
PAR ID:
10451737
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Materials
Volume:
16
Issue:
15
ISSN:
1996-1944
Page Range / eLocation ID:
5489
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Glass fiber reinforced polymer (GFRP) bars are composite materials that, in the field of civil engineering, serve as an alternative for the internal steel reinforcement of concrete structures. The study and development of these material systems in construction are relatively new, requiring targeted research and development to achieve greater adoption. In this scenario, research and standardization play crucial roles. The development and publication of new test methods, material specifications, and other standards, as well as the improvement of the existing ones, allow for quality control, validation, and acceptance. One of these improvements is the evaluation of precision statements of the different ASTM standards related to the physical-mechanical and durability characterization of GFRP bars used as internal concrete reinforcement. Precision refers to how closely test results obtained under specific conditions agree with each other. A precision statement allows potential users to assess the test method’s general suitability for their intended applications. It should provide guidance on the type of variation that can be expected between test results when the method is used in one or more competent laboratories. The present study aims to enhance the precision statements in ASTM standards pertaining to the geometric, material, mechanical, and physical properties required for GFRP bars in concrete reinforcement, including ASTM standards like ASTM D7205M-21, Standard Test Method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars; ASTM D7617M-11(2017), Standard Test Method for Transverse Shear Strength of Fiber-Reinforced Polymer Matrix Composite Bars; and ASTM D7913M-14(2020), Standard Test Method for Bond Strength of Fiber-Reinforced Polymer Matrix Composite Bars to Concrete by Pullout Testing, while in accordance with the statistical procedures and calculation methods outlined in ASTM Practices ASTM E177-20, Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods, and ASTM E691-22, Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method. 
    more » « less
  2. Abstract The current provisions for development length in the ACI 440.11 code disregard the confinement effect provided by stirrups on the bond strength of longitudinal bars and require splice lengths that pose implementation challenges. Given the significant improvement in GFRP material properties, this study investigated the bond strength of sand-coated GFRP bars and proposed a new factor to include the effect of stirrup confinement on the bond-strength provisions. The experimental program involved 16 GFRP-reinforced concrete (RC) beams having a width of 300 mm, and depth 440 mm, consisting of two repetitions for every configuration, subjected to four-point loading. The test parameters comprised lap-splice length and stirrup spacing in the lap-spliced zone. Out of 16 GFRP-RC beams, two beams were reinforced with two M16 (No. 5) continuous bars and six with varying lap-splice lengths [i.e., 40, 60, and 80 bar diameters (db)] without confining stirrups. To evaluate the effect of confining stirrups, eight beams were reinforced with two M16 (No. 5) lap-spliced longitudinal bars (i.e., 40 and 60 db) and M13 (No. 4) stirrups spaced at 100 mm (4 in.) and 200 mm (8 in.) center-to-center. Based on experimental results, stirrup confinement clearly increased the bond strength, reduced longitudinal bar slippage, and increased splitting stress. The beams with a splice length of 60 dband stirrups on 100 mm (4 in.) centers achieved 57% higher capacity than those with the same lap-splice length but without stirrups. Further, the ACI 440.11 equation overestimated the bond strength of sand-coated GFRP bars but yielded conservative results with closely spaced stirrups. CSA S6:25 predicted bond-strength values that were close to the experimental results compared to CSA S6:19, and CSA S806:12. 
    more » « less
  3. Design and construction errors and material deterioration can lead to concrete elements being subjected to high levels of sustained stress well exceeding typical service levels. These high levels of sustained stress have led to structural collapses in the United States and around the world. However, the performance of shear-controlled concrete elements (beams and slab-column connections) under high sustained stress is not well understood. Under high sustained compressive stress (greater than 0.75fc’) concrete will suffer tertiary creep characterized by accelerated permanent strain, leading eventually to a failure. The bond of the reinforcing bars to the concrete is also affected leading to slip. This research presents the results of experimental tests on shear-controlled RC beams that were loaded to 81, 86, and 92 percent of their short-term capacity and observed for about four weeks. Deflection and strain measurements were recorded for each specimen throughout the sustained load test. Under high sustained stress the specimens showed continued deflection with time, with most of the deflection occurring shortly after the application of load. The failure of the specimens exhibited more flexural response than that of the control specimen. The test results show that high levels of sustained stress (up to 92% of their short-term capacity) can be sustained for a prolonged time; however, the deflections and cracking are increased and the ultimate failure mode may be changed. This information will help engineers identify elements nearing failure under high levels of sustained stress. 
    more » « less
  4. In modern practice, precast segmental tunnel linings are typically installed via a tunnel boring machine (TBM), which advances by thrusting against the previously installed segmental ring. The forces applied through the thrust jack pads can induce significant bursting and spalling tensile stresses and strains in the segment, and improperly designed segments can suffer from cracking as a result. An experimental study has been conducted to evaluate the progression of damage from initial cracking to ultimate capacity for full-scale precast tunnel liner segments under thrust jack loading. The baseline segment design is composed of steel fiber reinforced concrete (SFRC), and the impact of supplemental conventional steel bar reinforcement and load application eccentricity were also investigated. Six full-scale tests were performed with a thrust jack load per pad up to 22.2 MN (which is ~3.8 times the maximum expected installation thrust force). At the maximum expected thrust jack load during installation (5.78 MN per pad), the segments were virtually undamaged, and hairline cracking initiated between the load pads on only one test. At the TBM’s ultimate jacking capacity (9.55 MN per pad) surface cracking was observed between and under the load pads; however, the crack width remained below 0.2 mm for all specimens. The formation of cracking limit states was accurately predicted by pre-test linear and nonlinear finite element (FE) models. At overload conditions, the baseline SFRC-only segment exhibited a radial bursting failure. The inclusion of supplemental conventional reinforcement does not reduce the level of cracking damage or strain development below the TBM’s ultimate jacking capacity; however, at overload conditions, the supplemental reinforcement mitigates cracking and prevents a radial bursting failure at 20.3 MN per pad. A load eccentricity of 38 mm towards the extrados surface increased the transverse strain and the formation of transverse cracking at a lower load level. 
    more » « less
  5. Recycling glass fiber reinforced polymer (GFRP) composite materials has been proven to be challenging due to their high mechanical performance and high resistance to harsh chemical and thermal conditions. This work discusses the efforts made in the past to mechanically process GFRP waste materials by cutting them into large-sized (cm scale) pieces, as opposed to pulverization, for use in concrete mixtures. These pieces can be classified into two main categories—coarse aggregate and discrete reinforcement, here referred to as “needles.” The results from all the studies show that using GFRP coarse aggregate leads to significant reductions in the compressive strength and tensile strength of concrete. However, GFRP needles lead to sizable increases in the energy absorption capacity of concrete. In addition, if the glass fibers are longitudinally aligned within the needles, these elements can substantially increase the tensile strength of concrete. Processing GFRP waste into needles requires less energy and time than that for producing GFRP coarse aggregate. Also, compared to pulverized GFRP waste, which consists of broken and separate particles of glass and resin that at best can be used as low-quality fillers, GFRP needles are high strength composite elements 
    more » « less