skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: After the mammoths: the ecological legacy of late Pleistocene megafauna extinctions
The significant extinctions in Earth history have largely been unpredictable in terms of what species perish and what traits make species susceptible. The extinctions occurring during the late Pleistocene are unusual in this regard, because they were strongly size-selective and targeted exclusively large-bodied animals (i.e., megafauna, >1 ton) and disproportionately, large-bodied herbivores. Because these animals are also at particular risk today, the aftermath of the late Pleistocene extinctions can provide insights into how the loss or decline of contemporary large-bodied animals may influence ecosystems. Here, we review the ecological consequences of the late Pleistocene extinctions on major aspects of the environment, on communities and ecosystems, as well as on the diet, distribution and behavior of surviving mammals. We find the consequences of the loss of megafauna were pervasive and left legacies detectable in all parts of the Earth system. Furthermore, we find that the ecological roles that extinct and modern megafauna play in the Earth system are not replicated by smaller-bodied animals. Our review highlights the important perspectives that paleoecology can provide for modern conservation efforts.  more » « less
Award ID(s):
2051255 1555535 1744223
PAR ID:
10451855
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Cambridge Prisms: Extinction
ISSN:
2755-0958
Page Range / eLocation ID:
1 to 55
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The collapse of the steppe-tundra biome (mammoth steppe) at the end of the Pleistocene is used as an important example of top-down ecosystem cascades, where human hunting of keystone species led to profound changes in vegetation across high latitudes in the Northern Hemisphere. Alternatively, it is argued that this biome transformation occurred through a bottom-up process, where climate-driven expansion of shrub tundra ( Betula , Salix spp.) replaced the steppe-tundra vegetation that grazing megafauna taxa relied on. In eastern Beringia, these differing hypotheses remain largely untested, in part because the precise timing and spatial pattern of Late Pleistocene shrub expansion remains poorly resolved. This uncertainty is caused by chronological ambiguity in many lake sediment records, which typically rely on radiocarbon ( 14 C) dates from bulk sediment or aquatic macrofossils—materials that are known to overestimate the age of sediment layers. Here, we reexamine Late Pleistocene pollen records for which 14 C dating of terrestrial macrofossils is available and augment these data with 14 C dates from arctic ground-squirrel middens and plant macrofossils. Comparing these paleovegetation data with a database of published 14 C dates from megafauna remains, we find the postglacial expansion of shrub tundra preceded the regional extinctions of horse ( Equus spp.) and mammoth ( Mammuthus primigenius ) and began during a period when the frequency of 14 C dates indicates large grazers were abundant. These results are not consistent with a model of top-down ecosystem cascades and support the hypothesis that climate-driven habitat loss preceded and contributed to turnover in mammal communities. 
    more » « less
  2. The cause, or causes, of the Pleistocene megafaunal extinctions have been difficult to establish, in part because poor spatiotemporal resolution in the fossil record hinders alignment of species disappearances with archeological and environmental data. We obtained 172 new radiocarbon dates on megafauna from Rancho La Brea in California spanning 15.6 to 10.0 thousand calendar years before present (ka). Seven species of extinct megafauna disappeared by 12.9 ka, before the onset of the Younger Dryas. Comparison with high-resolution regional datasets revealed that these disappearances coincided with an ecological state shift that followed aridification and vegetation changes during the Bølling-Allerød (14.69 to 12.89 ka). Time-series modeling implicates large-scale fires as the primary cause of the extirpations, and the catalyst of this state shift may have been mounting human impacts in a drying, warming, and increasingly fire-prone ecosystem. 
    more » « less
  3. null (Ed.)
    A paleontological deposit near San Clemente de Térapa represents one of the very few Rancholabrean North American Land Mammal Age sites within Sonora, Mexico. During that time, grasslands were common, and the climate included cooler and drier summers and wetter winters than currently experienced in northern Mexico. Here, we demonstrate restructuring in the mammalian community associated with environmental change over the past 40,000 years at Térapa. The fossil community has a similar number of carnivores and herbivores whereas the modern community consists mostly of carnivores. There was also a 97% decrease in mean body size (from 289 kg to 9 kg) because of the loss of megafauna. We further provide an updated review of ungulates and carnivores, recognizing two distinct morphotypes of Equus, including E. scotti and a slighter species; as well as Platygonus compressus; Camelops hesternus; Canis dirus; and Lynx rufus; and the first regional records of Palaeolama mirifica, Procyon lotor, and Smilodon cf. S. fatalis. The Térapa mammals presented here provide a more comprehensive understanding of the faunal community restructuring that occurred in northern Mexico from the late Pleistocene to present day, indicating further potential biodiversity loss with continued warming and drying of the region. 
    more » « less
  4. Ecosystem function relies in part on aligned relationships between functional traits of animals and the environments in which they live. Studies of trait-environment relationships have largely focused on communities of native species, but domestic and non-native species also play a role in the functioning of modern ecosystems. We use ecometrics, or study of functional trait-environment relationships, to evaluate the impact of domestic and non-native species on community-level trait composition and its relationship with precipitation by comparing four community compositions: modern native, modern native plus domestic, modern native plus non-native, and late Pleistocene (0.126–0.0117 Ma). We integrate large and small herbivorous mammals into a single ecometric model of hypsodonty (i.e., tooth crown height) and annual precipitation (n=8439, r=-0.7, R2=0.4, p<0.001). We hypothesize: 1) ecometric models of modern native communities will differ from those for late Pleistocene communities, 2) inclusion of domestic species will align ecometric relationships with those from the late Pleistocene, 3) inclusion of non-native species will maintain ecometric relationships of modern native communities. We found modern communities of native species have lower hypsodonty values and higher precipitation estimates than late Pleistocene communities. Domestic species shift modern communities toward higher hypsodonty values and lower precipitation estimates like those in the late Pleistocene. Today’s domestics are mostly high-crowned grazing species representative of the fauna lost prior to the Holocene. Non-native species do not shift modern native trait composition or the associated precipitation estimates, illustrating the success of non-native species due to trait alignment with their new environments. Thus, conservation and restoration efforts should consider trait composition of whole communities because it provides unique information to measures of taxonomic composition. 
    more » « less
  5. Paleoenvironmental reconstructions of the Last Glacial Period of eastern Africa paint a picture of a landscape dominated by grasslands and herds of diverse grazing herbivores unlike anywhere in modern Africa. However, the scale of such reconstructions is often at the site level and greatly time-averaged. To elucidate the impact of glacial conditions on tropical grassland animal behavior, a more direct proxy is needed. Using stable strontium, carbon, and oxygen isotopes, we reconstruct paleoenvironmental conditions and behavior of 18 bovid and equid species from four sites dating to the Last Glacial Period in Kenya (Karungu, Rusinga, Kibogo, and Lukenya Hill). In doing so, we address i) migration patterns, ii) seasonality of precipitation and diet, and iii) the role that seasonal responses played in niche separation of closely related species. We find that migration played a similar role in Last Glacial Period grasslands to what it does today but with a notably different set of species; that animals had relatively stable, grass-dominated diets year-round, peaking in C4 grass abundance during the Last Glacial Maximum; that precipitation and seasonality fell within the range of modern eastern African ecosystems; and that a diverse guild of ungulate grazers was able to coexist due to niche separation detectable as isotopic differences. These results combine to extend the theory that eastern African grasslands were greatly expanded and resource-rich year-round during the Last Glacial Period, creating highly favorable conditions for grazing ungulates. Additionally, they demonstrate the geologic recency of the modern guild of migratory species in eastern Africa, which replaced a set of now-extinct migratory species once common in grasslands during the Last Glacial Period, most notably the enigmatic bovid Rusingoryx. Our results illustrate the ecosystem dynamics of Late Pleistocene Kenya on a scale not attainable with most other paleoenvironmental proxies: the scale of individual animals’ lifetimes. This is nearly as close as possible to an actualistic ecological survey of ungulate behavior during the Last Glacial Period in a setting not analogous to any ecosystem on Earth today. 
    more » « less