skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: K-theory for real k-graph C∗-algebras
Award ID(s):
1800749
PAR ID:
10451889
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Annals of K-Theory
Volume:
7
Issue:
2
ISSN:
2379-1683
Page Range / eLocation ID:
395 to 440
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We produce an explicit description of the K-theory and K-homology of the pure braid group on n strands. We describe the Baum–Connes correspondence between the generators of the left- and right-hand sides for n = 4. Using functoriality of the assembly map and direct computations, we recover Oyono-Oyono’s result on the Baum–Connes conjecture for pure braid groups [24]. We also discuss the case of the full braid group on 3-strands. 
    more » « less
  2. In this paper, we study k-means++ and k-means++ parallel, the two most popular algorithms for the classic k-means clustering problem. We provide novel analyses and show improved approximation and bi-criteria approximation guarantees for k-means++ and k-means++ parallel. Our results give a better theoretical justification for why these algorithms perform extremely well in practice. We also propose a new variant of k-means++ parallel algorithm (Exponential Race k-means++) that has the same approximation guarantees as k-means++. 
    more » « less