skip to main content


Title: Thermal limits of Africanized honey bees are influenced by temperature ramping rate but not by other experimental conditions
Interest in assessing the critical thermal limits of bees is rapidly increasing, as these physiological traits are good predictors of bees' potential responses to extreme temperature changes, which is relevant in the context of global climate change. However, estimates of thermal limits may be influenced by several factors and published studies differ in experimental methods and conditions, such as the rate of temperature change (ramping rate) and feeding status, which might yield inaccurate predictions and limit comparisons across taxa and regions. Using Africanized honey bees as a model organism, we assessed the effect of ramping rate (0.25, 0.5, 0.75, 1.0 and 1.5 °C min-1) and length of starvation (recently fed vs. fasted for 6, 12, and 18 h) on foragers' lower (CTMin) and upper (CTMax) thermal limits, as well as the effect of cold stress on CTMax. In addition, we evaluated the two approaches currently used to assess CTMax with a water bath: floating or submerging the testing vials in the bath. We found that critical thermal limits were influenced by ramping rates but not by the other assessed experimental conditions. On average, at ramping rates faster than 0.5 °C min-1, bees displayed a CTMin 1.1-2.6 °C lower and a CTMax 5.3-6.9 °C higher than those of the slowest ramping rate. We discuss the implications of these results and provide suggestions for future thermal studies on bees.  more » « less
Award ID(s):
1950805
NSF-PAR ID:
10451958
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of thermal biology
Volume:
110
ISSN:
0306-4565
Page Range / eLocation ID:
e103369
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bumble bees are key pollinators with some species reared in captivity at a commercial scale, but with significant evidence of population declines and with alarming predictions of substantial impacts under climate change scenarios. While studies on the thermal biology of temperate bumble bees are still limited, they are entirely absent from the tropics where the effects of climate change are expected to be greater. Herein, we test whether bees' thermal tolerance decreases with elevation and whether the stable optimal conditions used in laboratory-reared colonies reduces their thermal tolerance. We assessed changes in the lower (CTMin) and upper (CTMax) critical thermal limits of four species at two elevations (2600 and 3600 m) in the Colombian Andes, examined the effect of body size, and evaluated the thermal tolerance of wild-caught and laboratory-reared individuals of Bombus pauloensis. We also compiled information on bumble bees' thermal limits and assessed potential predictors for broadscale patterns of variation. We found that CTMin decreased with increasing elevation, while CTMax was similar between elevations. CTMax was slightly higher (0.84°C) in laboratory-reared than in wild-caught bees while CTMin was similar, and CTMin decreased with increasing body size while CTMax did not. Latitude is a good predictor for CTMin while annual mean temperature, maximum and minimum temperatures of the warmest and coldest months are good predictors for both CTMin and CTMax. The stronger response in CTMin with increasing elevation, and similar CTMax, supports Brett's heat-invariant hypothesis, which has been documented in other taxa. Andean bumble bees appear to be about as heat tolerant as those from temperate areas, suggesting that other aspects besides temperature (e.g., water balance) might be more determinant environmental factors for these species. Laboratory-reared colonies are adequate surrogates for addressing questions on thermal tolerance and global warming impacts. 
    more » « less
  2. Abstract

    The thermally dynamic nearshore Beaufort Sea, Alaska, is experiencing climate change-driven temperature increases. Measuring thermal tolerance of broad whitefish (Coregonus nasus) and saffron cod (Eleginus gracilis), both important species in the Arctic ecosystem, will enhance understanding of species-specific thermal tolerances. The objectives of this study were to determine the extent that acclimating broad whitefish and saffron cod to 5°C and 15°C changed their critical thermal maximum (CTmax) and HSP70 protein and mRNA expression in brain, muscle and liver tissues. After acclimation to 5°C and 15°C, the species were exposed to a thermal ramping rate of 3.4°C · h−1 before quantifying the CTmax and HSP70 protein and transcript concentrations. Broad whitefish and saffron cod acclimated to 15°C had a significantly higher mean CTmax (27.3°C and 25.9°C, respectively) than 5°C-acclimated fish (23.7°C and 23.2°C, respectively), which is consistent with trends in CTmax between higher and lower acclimation temperatures. There were species-specific differences in thermal tolerance with 15°C-acclimated broad whitefish having higher CTmax and HSP70 protein concentrations in liver and muscle tissues than saffron cod at both acclimation temperatures. Tissue-specific differences were quantified, with brain and muscle tissues having the highest and lowest HSP70 protein concentrations, respectively, for both species and acclimation temperatures. The differences in broad whitefish CTmax between the two acclimation temperatures could be explained with brain and liver tissues from 15°C acclimation having higher HSP70a-201 and HSP70b-201 transcript concentrations than control fish that remained in lab-acclimation conditions of 8°C. The shift in CTmax and HSP70 protein and paralogous transcripts demonstrate the physiological plasticity that both species possess in responding to two different acclimation temperatures. This response is imperative to understand as aquatic temperatures continue to elevate.

     
    more » « less
  3. Tropical pollinators are expected to experience substantial effects due to climate change, but aspects of their thermal biology remain largely unknown. We investigated the thermal tolerance of stingless honey-making bees, the most ecologically, economically and culturally important group of tropical pollinators. We assessed changes in the lower (CTMin) and upper (CTMax) critical thermal limits of 17 species (12 genera) at two elevations (200 and 1500 m) in the Colombian Andes. In addition, we examined the influence of body size (intertegular distance, ITD), hairiness (thoracic hair length) and coloration (lightness value) on bees’ thermal tolerance. Because stingless beekeepers often relocate their colonies across the altitudinal gradient, as an initial attempt to explore potential social responses to climatic variability, we also tracked for several weeks brood temperature and humidity in nests of three species at both elevations. We found that CTMin decreased with elevation while CTMax was similar between elevations. CTMin and CTMax increased (low cold tolerance and high heat tolerance) with increasing ITD, hair length and lightness value, but these relationships were weak and explained at most 10% of the variance. Neither CTMin nor CTMax displayed significant phylogenetic signal. Brood nest temperature tracked ambient diel variations more closely in the low-elevation site, but it was constant and higher at the high-elevation site. In contrast, brood nest humidity was uniform throughout the day regardless of elevation. The stronger response in CTMin, and a similar CTMax between elevations, follows a pattern of variation documented across a wide range of taxa that is commonly known as the Brett’s heat-invariant hypothesis. Our results indicate differential thermal sensitivities and potential thermal adaptations to local climate, which support ongoing conservation policies to restrict the long-distance relocations of colonies. They also shed light on how malleable nest thermoregulation can be across elevations. 
    more » « less
  4. Abstract

    Predicting insect responses to climate change is essential for preserving ecosystem services and biodiversity. Due to high daytime temperatures and low humidity levels, nocturnal insects are expected to have lower heat and desiccation tolerance compared to diurnal species. We estimated the lower (CTMin) and upper (CTMax) thermal limits ofMegalopta, a group of neotropical, forest-dwelling bees. We calculated warming tolerance (WT) as a metric to assess vulnerability to global warming and measured survival rates during simulated heatwaves and desiccation stress events. We also assessed the impact of body size and reproductive status (ovary area) on bees’ thermal limits.Megaloptadisplayed lower CTMin, CTMax, and WTs than diurnal bees (stingless bees, orchid bees, and carpenter bees), but exhibited similar mortality during simulated heatwave and higher desiccation tolerance. CTMinincreased with increasing body size across all bees but decreased with increasing body size and ovary area inMegalopta, suggesting a reproductive cost or differences in thermal environments. CTMaxdid not increase with increasing body size or ovary area. These results indicate a greater sensitivity ofMegaloptato temperature than humidity and reinforce the idea that nocturnal insects are thermally constrained, which might threaten pollination services in nocturnal contexts during global warming.

     
    more » « less
  5. The anionic hydrocolloid polysaccharide xanthan gum is widely used in the food and petroleum industries (among others) as a viscosity enhancement polymer due to its high viscosity at low concentrations and moderate temperatures. The physical properties of microbial polysaccharide xanthan gum aqueous solutions were investigated using temperature dependent viscosity measurements. Specifically, the effect of thermal history on the solution viscosity was investigated. Heating and cooling cycles were assessed in two ways, by using a “sawtooth” and “triangle” pattern, which essentially differed in the rates of cooling. The sawtooth method used a cooling rate of 2.0 ◦C min􀀀 1 whereas the triangle pattern had a cooling rate of 0.20 ◦C min􀀀 1. The sawtooth cooling rate was controlled by the speed at which the Peltier device could cool the sample, and the triangle rate was governed by the time required to measure the viscosity at each temperature on return to the initial value. Cycles measured using the sawtooth pattern for 16 mg/kg xanthan gum in water showed an 8–10% overall decrease in the viscosity over four complete cycles. Comparatively, at 320 mg/kg the xanthan gum solution showed a 25% decrease in viscosity over four cycles. The observed temperature dependent viscosity variation suggested minor modifications in the physical network structure of xanthan gum. When using a triangle heating/cooling pattern, the overall decrease in the xanthan gum solution viscosity was 5–7% for 16 mg/kg and only 10% change for 320 mg/ kg solutions. The activation energy of viscous flow for the aqueous xanthan gum solutions by either method was ~15.0 kJ/mol under all conditions. The data showed that temperature and heating cycles influence xanthan gum viscosity and thermal history, which depends more strongly on xanthan gum concentration than solution temperature. 
    more » « less