skip to main content


Title: A Modeling Framework for Jamming Structures
Abstract

Jamming is a structural phenomenon that provides tunable mechanical behavior. A jamming structure typically consists of a collection of elements with low effective stiffness and damping. When a pressure gradient, such as vacuum, is applied, kinematic and frictional coupling increase, resulting in dramatically altered mechanical properties. Engineers have used jamming to build devices from tunable‐stiffness grippers to tunable‐damping landing gear. This study presents a rigorous framework that systematically guides the design of jamming structures for target applications. The force‐deflection behavior of major types of jamming structures (i.e., grain, fiber, and layer) in fundamental loading conditions (e.g., tension, shear, and bending) is compared. High‐performing pairs (e.g., grains in compression, layers in shear, and bending) are identified. Parameters that go into designing, fabricating, and actuating a jamming structure (e.g., scale, material, geometry, and actuator) are described, along with their effects on functional metrics. Two key methods to expand on the design space of jamming structures are introduced: using structural design to achieve effective tunable‐impedance behavior in specific loading directions, and creating hybrid jamming structures to utilize the advantages of different types of jamming. Collectively, this study elaborates and extends the jamming design space, providing a conceptual modeling framework for jamming‐based structures.

 
more » « less
NSF-PAR ID:
10451991
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
31
Issue:
16
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Materials capable of dramatically changing their stiffness along specific directions in response to an external stimulus can enable the design of novel robots that can quickly switch between soft/highly–deformable and rigid/load–bearing states. While the jamming transition in discrete media has recently been demonstrated to be a powerful mechanism to achieve such variable stiffness, the lack of numerical tools capable of predicting the mechanical response of jammed media subjected to arbitrary loading conditions has limited the advancement of jamming-based robots. To overcome this limitation, we introduce a 3D finite–element-based numerical tool that predicts the mechanical response of pressurized, infinitely–extending discrete media subjected to arbitrary loading conditions. We demonstrate the capabilities of our numerical tool by investigating the response of periodic laminar and fibrous media subjected to various types of loadings. We expect this work to foster further numerical studies on jamming–based soft robots and structures by facilitating their design, as well as providing a foundation for combining various types of jamming media to create a new generation of tunable composites. 
    more » « less
  2. null (Ed.)
    Purpose Mechanical anisotropy associated with material extrusion additive manufacturing (AM) complicates the design of complex structures. This study aims to focus on investigating the effects of design choices offered by material extrusion AM – namely, the choice of infill pattern – on the structural performance and optimality of a given optimized topology. Elucidation of these effects provides evidence that using design tools that incorporate anisotropic behavior is necessary for designing truly optimal structures for manufacturing via AM. Design/methodology/approach A benchmark topology optimization (TO) problem was solved for compliance minimization of a thick beam in three-point bending and the resulting geometry was printed using fused filament fabrication. The optimized geometry was printed using a variety of infill patterns and the strength, stiffness and failure behavior were analyzed and compared. The bending tests were accompanied by corresponding elastic finite element analyzes (FEA) in ABAQUS. The FEA used the material properties obtained during tensile and shear testing to define orthotropic composite plies and simulate individual printed layers in the physical specimens. Findings Experiments showed that stiffness varied by as much as 22% and failure load varied by as much as 426% between structures printed with different infill patterns. The observed failure modes were also highly dependent on infill patterns with failure propagating along with printed interfaces for all infill patterns that were consistent between layers. Elastic FEA using orthotropic composite plies was found to accurately predict the stiffness of printed structures, but a simple maximum stress failure criterion was not sufficient to predict strength. Despite this, FE stress contours proved beneficial in identifying the locations of failure in printed structures. Originality/value This study quantifies the effects of infill patterns in printed structures using a classic TO geometry. The results presented to establish a benchmark that can be used to guide the development of emerging manufacturing-oriented TO protocols that incorporate directionally-dependent, process-specific material properties. 
    more » « less
  3. Abstract

    There are two major structural paradigms in robotics: soft machines, which are conformable, durable, and safe; and traditional rigid robots, which are fast, precise, and capable of applying high forces. Here, the paradigms are bridged by enabling soft machines to behave like traditional rigid robots on command. This task is accomplished via laminar jamming, a structural phenomenon in which a laminate of compliant strips becomes strongly coupled through friction when a pressure gradient is applied, causing dramatic changes in mechanical properties. Rigorous analytical and finite element models of laminar jamming are developed, and jamming structures are experimentally characterized to show that the models are highly accurate. Then jamming structures are integrated into soft machines to enable them to selectively exhibit the stiffness, damping, and kinematics of traditional rigid robots. The models allow jamming structures to efficiently meet arbitrary performance specifications, and the physical demonstrations illustrate how to construct systems that can behave like either soft machines or traditional rigid robots at will, such as continuum manipulators that can rapidly have joints appear and disappear. This study aims to foster a new generation of mechanically versatile machines and structures that cannot simply be classified as “soft” or “rigid.”

     
    more » « less
  4. Flexures provide precise motion control without friction or wear. Variable impedance mechanisms enable adapt- able and robust interactions with the environment. This paper combines the advantages of both approaches through layer jamming. Thin sheets of complaint material are encased in an airtight envelope, and when connected to a vacuum, the bending stiffness and damping increase dramatically. Using layer jamming structures as flexure elements leads to mechan- ical systems that can actively vary stiffness and damping. This results in flexure mechanisms with the versatility to transition between degrees of freedom and degrees of constraint and to tune impact response. This approach is used to create a 2-DOF, jamming-based, tunable impedance robotic wrist that enables passive hybrid force/position control for contact tasks. 
    more » « less
  5. Abstract

    A beam element is constructed for microtubules based upon data reduction of the results from atomistic simulation of the carbon backbone chain of‐tubulin dimers. The database of mechanical responses to various types of loads from atomistic simulation is reduced to dominant modes. The dominant modes are subsequently used to construct the stiffness matrix of a beam element that captures the anisotropic behavior and deformation mode coupling that arises from a microtubule's spiral structure. In contrast to standard Euler–Bernoulli or Timoshenko beam elements, the link between forces and node displacements results not from hypothesized deformation behavior, but directly from the data obtained by molecular scale simulation. Differences between the resulting microtubule data‐driven beam model (MTDDBM) and standard beam elements are presented, with a focus on coupling of bending, stretch, shear deformations. The MTDDBM is just as economical to use as a standard beam element, and allows accurate reconstruction of the mechanical behavior of structures within a cell as exemplified in a simple model of a component element of the mitotic spindle.

     
    more » « less