Abstract Study on the regulation of broad‐spectrum resistance is an active area in plant biology.RESISTANCE TO POWDERY MILDEW 8.1(RPW8.1) is one of a few broad‐spectrum resistance genes triggering the hypersensitive response (HR) to restrict multiple pathogenic infections. To address the question how RPW8.1 signaling is regulated, we performed a genetic screen and tried to identify mutations enhancing RPW8.1‐mediated HR. Here, we provided evidence to connect an annexin protein with RPW8.1‐mediated resistance inArabidopsisagainst powdery mildew. We isolated and characterizedArabidopsis b7‐6mutant. A point mutation inb7‐6at theAt5g12380locus resulted in an amino acid substitution in ANNEXIN 8 (AtANN8). Loss‐of‐function or RNA‐silencing ofAtANN8led to enhanced expression ofRPW8.1, RPW8.1‐dependent necrotic lesions in leaves, and defense against powdery mildew. Conversely, over‐expression ofAtANN8compromised RPW8.1‐mediated disease resistance and cell death. Interestingly, the mutation in AtANN8 enhanced RPW8.1‐triggered H2O2. In addition, mutation in AtANN8 led to hypersensitivity to salt stress. Together, our data indicate that AtANN8 is involved in multiple stress signaling pathways and negatively regulates RPW8.1‐mediated resistance against powdery mildew and cell death, thus linking ANNEXIN's function with plant immunity.
more »
« less
Overexpression of two CDPKs from wild Chinese grapevine enhances powdery mildew resistance in Vitis vinifera and Arabidopsis
Summary Calcium‐dependent protein kinases (CDPKs) play vital roles in metabolic regulations and stimuli responses in plants. However, little is known about their function in grapevine.Here, we report thatVpCDPK9andVpCDPK13, two paralogousCDPKsfromVitis pseudoreticulataaccession Baihe‐35‐1, appear to positively regulate powdery mildew resistance. The transcription of them in leaves of ‘Baihe‐35‐1’ were differentially induced upon powdery mildew infection. Overexpression ofVpCDPK9‐YFPorVpCDPK13‐YFPin theV. viniferasusceptible cultivar Thompson Seedless resulted in enhanced resistance to powdery mildew (YFP, yellow fluorescent protein). This might be due to elevation of SA and ethylene production, and excess accumulation of H2O2and callose in penetrated epidermal cells and/or the mesophyll cells underneath.Ectopic expression ofVpCDPK9‐YFPin Arabidopsis resulted in varied degrees of reduced stature, pre‐mature senescence and enhanced powdery mildew resistance. However, these phenotypes were abolished inVpCDPK9‐YFPtransgenic lines impaired in SA signaling (pad4sid2) or ethylene signaling (ein2). Moreover, both of VpCDPK9 and VpCDPK13 were found to interact with and potentially phosphorylate VpMAPK3, VpMAPK6, VpACS1 and VpACS2in vivo(ACS, 1‐aminocyclopropane‐1‐carboxylic acid (ACC) synthase; MAPK, mitogen‐activated protein kinase).These results suggest thatVpCDPK9andVpCDPK13contribute to powdery mildew resistance via positively regulating SA and ethylene signaling in grapevine.
more »
« less
- Award ID(s):
- 1901566
- PAR ID:
- 10451992
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 230
- Issue:
- 5
- ISSN:
- 0028-646X
- Page Range / eLocation ID:
- p. 2029-2046
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Biotrophic pathogens are believed to strategically manipulate sugar transport in host cells to enhance their access to carbohydrates. However, mechanisms of sugar translocation from host cells to biotrophic fungi such as powdery mildew across the plant–haustorium interface remain poorly understood.To investigate this question, systematic subcellular localisation analysis was performed for all the 14 members of the monosaccharide sugar transporter protein (STP) family inArabidopsis thaliana. The best candidate AtSTP8 was further characterised for its transport properties inSaccharomyces cerevisiaeand potential role in powdery mildew infection by gene ablation and overexpression in Arabidopsis.Our results showed that AtSTP8 was mainly localised to the endoplasmic reticulum (ER) and appeared to be recruited to the host‐derived extrahaustorial membrane (EHM) induced by powdery mildew. Functional complementation assays inS. cerevisiaesuggested that AtSTP8 can transport a broad spectrum of hexose substrates. Moreover, transgenic Arabidopsis plants overexpressingAtSTP8showed increased hexose concentration in leaf tissues and enhanced susceptibility to powdery mildew.Our data suggested that the ER‐localised sugar transporter AtSTP8 may be recruited to the EHM where it may be involved in sugar acquisition by haustoria of powdery mildew from host cells in Arabidopsis.more » « less
-
Abstract Grapevine (Vitis vinifera) is an economically important fruit crop worldwide. The widely cultivated grapevine is susceptible to powdery mildew caused by Erysiphe necator. In this study, we used CRISPR-Cas9 to simultaneously knock out VviWRKY10 and VviWRKY30 encoding two transcription factors reported to be implicated in defense regulation. We generated 53 wrky10 single mutant transgenic plants and 15 wrky10 wrky30 double mutant transgenic plants. In a 2-yr field evaluation of powdery mildew resistance, the wrky10 mutants showed strong resistance, while the wrky10 wrky30 double mutants showed moderate resistance. Further analyses revealed that salicylic acid (SA) and reactive oxygen species contents in the leaves of wrky10 and wrky10 wrky30 were substantially increased, as was the ethylene (ET) content in the leaves of wrky10. The results from dual luciferase reporter assays, electrophoretic mobility shift assays and chromatin immunoprecipitation (ChIP) assays demonstrated that VviWRKY10 could directly bind to the W-boxes in the promoter of SA-related defense genes and inhibit their transcription, supporting its role as a negative regulator of SA-dependent defense. By contrast, VviWRKY30 could directly bind to the W-boxes in the promoter of ET-related defense genes and promote their transcription, playing a positive role in ET production and ET-dependent defense. Moreover, VviWRKY10 and VviWRKY30 can bind to each other's promoters and mutually inhibit each other's transcription. Taken together, our results reveal a complex mechanism of regulation by VviWRKY10 and VviWRKY30 for activation of measured and balanced defense responses against powdery mildew in grapevine.more » « less
-
Abstract In Arabidopsis thaliana, the POWDERY MILDEW RESISTANT4 (PMR4)/GLUCAN SYNTHASE LIKE5 (GSL5) callose synthase is required for pathogen-induced callose deposition in cell wall defense. Paradoxically, pmr4/gsl5 mutants exhibit strong resistance to both powdery and downy mildew. The powdery mildew resistance of pmr4/gsl5 has been attributed to upregulated salicylic acid (SA) signaling based on its dependance on PHYTOALEXIN DEFICIENT4 (PAD4), which controls SA accumulation, and its abolishment by bacterial NahG salicylate hydroxylase. Our study revealed that disruption of PMR4/GSL5 also leads to early senescence. Suppressor analysis uncovered that PAD4 and N-hydroxypipecolic acid (NHP) biosynthetic genes ABERRANT GROWTH AND DEATH2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) and FLAVIN-DEPENDENT MONOXYGENASE1 (FMO1) are required for early senescence of pmr4/gsl5 mutants. The critical role of NHP in the early senescence of pmr4/gsl5 was supported by greatly increased accumulation of pipecolic acid in pmr4/gsl5 mutants. In contrast, disruption of the SA biosynthetic gene ISOCHORISMATE SYNTHASE1/SA-INDUCTION DIFFICIENT 2 (ICS1/SID2), which greatly reduces SA accumulation, had little effect on impaired growth of pmr4/gsl5. Furthermore, while disruption of PAD4 completely abolished the powdery mildew resistance in pmr4/gsl5, mutations in ICS1/SID2, ALD1, or FMO1 had only a minor effect on the resistance of the mutant plants. However, disruption of both ICS1/SID2 and FMO1 abolished the enhanced immunity of the callose synthase mutants against the fungal pathogen. Therefore, while NHP plays a crucial role in the early senescence of pmr4/gsl5 mutants, both SA and NHP have important roles in the strong powdery mildew resistance induced by the loss of the callose synthase.more » « less
-
Abstract Spray‐induced gene silencing (SIGS) is an emerging tool for crop pest protection. It utilizes exogenously applied double‐stranded RNA to specifically reduce pest target gene expression using endogenous RNA interference machinery. In this study, SIGS methods were developed and optimized for powdery mildew fungi, which are widespread obligate biotrophic fungi that infect agricultural crops, using the known azole‐fungicide targetcytochrome P45051 (CYP51) in theGolovinomyces orontii–Arabidopsis thalianapathosystem. Additional screening resulted in the identification of conserved gene targets and processes important to powdery mildew proliferation:apoptosis‐antagonizing transcription factorin essential cellular metabolism and stress response; lipid catabolism geneslipase a,lipase 1, andacetyl‐CoA oxidasein energy production;and genes involved in manipulation of the plant host via abscisic acid metabolism (9‐cis‐epoxycarotenoid dioxygenase,xanthoxin dehydrogenase, and a putativeabscisic acid G‐protein coupled receptor) and secretion of the effector protein,effector candidate 2. Powdery mildew is the dominant disease impacting grapes and extensive powdery mildew resistance to applied fungicides has been reported. We therefore developed SIGS for theErysiphe necator–Vitis viniferasystem and tested six successful targets identified using theG. orontii–A. thalianasystem. For all targets tested, a similar reduction in powdery mildew disease was observed between systems. This indicates screening of broadly conserved targets in theG. orontii–A. thalianapathosystem identifies targets and processes for the successful control of other powdery mildew fungi. The efficacy of SIGS on powdery mildew fungi makes SIGS an exciting prospect for commercial powdery mildew control.more » « less
An official website of the United States government
