skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quadratic expansions in optimal investment with respect to perturbations of the semimartingale model
We study the response of the optimal investment problem to small changes of the stock price dynamics. Starting with a multidimensional semimartingale setting of an incomplete market, we suppose that the perturbation process is also a general semimartingale. We obtain second-order expansions of the value functions, first-order corrections to the optimisers, and provide the adjustments to the optimal control that match the objective function up to the second order. We also give a characterisation in terms of the risk-tolerance wealth process, if it exists, by reducing the problem to the Kunita–Watanabe decomposition under a change of measure and numéraire. Finally, we illustrate the results by examples of base models that allow closed-form solutions, but where this structure is lost under perturbations of the model where our results allow an approximate solution.  more » « less
Award ID(s):
1848339
PAR ID:
10499980
Author(s) / Creator(s):
;
Publisher / Repository:
Springer-Verlag GmbH Germany
Date Published:
Journal Name:
Finance and Stochastics
Volume:
28
Issue:
2
ISSN:
0949-2984
Page Range / eLocation ID:
553 to 613
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the framework of an incomplete financial market where the stock price dynamics are modeled by a continuous semimartingale (not necessarily Markovian), an explicit second-order expansion formula for the power investor’s value function—seen as a function of the underlying market price of risk process—is provided. This allows us to provide first-order approximations of the optimal primal and dual controls. Two specific calibrated numerical examples illustrating the accuracy of the method are also given. 
    more » « less
  2. We consider the problem of optimal consumption of multiple goods in incomplete semimartingale markets. We formulate the dual problem and identify conditions that allow for the existence and uniqueness of the solution, and provide a characterization of the optimal consumption strategy in terms of the dual optimizer. We illustrate our results with examples in both complete and incomplete models. In particular, we construct closed-form solutions in some incomplete models. 
    more » « less
  3. Abstract We consider the problem of optimal investment with intermediate consumption in a general semimartingale model of an incomplete market, with preferences being represented by a utility stochastic field. We show that the key conclusions of the utility maximization theory hold under the assumptions of no unbounded profit with bounded risk and of the finiteness of both primal and dual value functions. 
    more » « less
  4. We study the analyticity of the value function in optimal investment with expected utility from terminal wealth and the relation to stochastically dominant financial models. We identify both a class of utilities and a class of semimartingale models for which we establish analyticity. Specifically, these utilities have completely monotonic inverse marginals, while the market models have a maximal element in the sense of infinite-order stochastic dominance. We construct two counterexamples, themselves of independent interest, which show that analyticity fails if either the utility or the market model does not belong to the respective special class. We also provide explicit formulas for the derivatives of all orders of the value functions as well as their optimizers. Finally, we show that for the set of supermartingale deflators, stochastic dominance of infinite order is equivalent to the apparently stronger dominance of second order. 
    more » « less
  5. We revisit the problem of designing optimal, individually rational matching mechanisms (in a general sense, allowing for cycles in directed graphs), where each player — who is associated with a subset of vertices — matches as many of his own vertices when he opts into the matching mechanism as when he opts out. We offer a new perspective on this problem by considering an arbitrary graph, but assuming that vertices are associated with players at random. Our main result asserts that, under certain conditions, any fixed optimal matching is likely to be individually rational up to lower-order terms. We also show that a simple and practical mechanism is (fully) individually rational, and likely to be optimal up to lower-order terms. We discuss the implications of our results for market design in general, and kidney exchange in particular. 
    more » « less