Abstract Reaction of {LiC6H2−2,4,6‐Cyp3⋅Et2O}2(Cyp=cyclopentyl) (1) of the new dispersion energy donor (DED) ligand, 2,4,6‐triscyclopentylphenyl with SnCl2afforded a mixture of the distannene {Sn(C6H2−2,4,6‐Cyp3)2}2(2), and the cyclotristannane {Sn(C6H2−2,4,6‐Cyp3)2}3(3).2is favored in solution at higher temperature (345 K or above) whereas3is preferred near 298 K. Van't Hoff analysis revealed the3to2conversion has a ΔH=33.36 kcal mol−1and ΔS=0.102 kcal mol−1 K−1, which gives a ΔG300 K=+2.86 kcal mol−1, showing that the conversion of3to2is an endergonic process. Computational studies show that DED stabilization in3is −28.5 kcal mol−1per {Sn(C6H2−2,4,6‐Cyp3)2unit, which exceeds the DED energy in2of −16.3 kcal mol−1per unit. The data clearly show that dispersion interactions are the main arbiter of the3to2equilibrium. Both2and3possess large dispersion stabilization energies which suppress monomer dissociation (supported by EDA results).
more »
« less
Computational mechanistic studies of the carbon–carbon double bond difunctionalization via epoxidation and subsequent aminolysis in vegetable oils
Abstract The industrial importance of the CC double bond difunctionalization in vegetable oils/fatty acid chains motivates computational studies aimed at helping to improve experimental protocols. The CC double bond epoxidation is studied with hydrogen peroxide, peracetic acid (CH3CO3H), and performic acid (HCO3H) oxidizing agents. The epoxide ring‐opening mechanism is calculated in the presence of ZnCl2, NiCl2, and FeCl2Lewis acidic catalysts. Computations show that H2O2(∆G‡= 39 kcal/mol,TS1HP) is not an effective oxidizing agent compared to CH3CO3H (∆G‡= 29.8 kcal/mol,TS1PA) and HCO3H (∆G‡= 26.7 kcal/mol,TS1PF). The FeCl2(∆G‡= 14.7 kcal/mol,TS1FC) coordination to the epoxide oxygen facilitates the ring‐opening via lower energy barriers compared to the ZnCl2(∆G‡= 19.5 kcal/mol,TS1ZC) and NiCl2(∆G‡= 29.4 kcal/mol,TS1NC) coordination. ZnCl2was frequently utilized as a catalyst in laboratory‐scale procedures. The energetic span model identifies the FeCl2(FC) catalytic cycle as the best option for the epoxide ring‐opening.
more »
« less
- Award ID(s):
- 1855470
- PAR ID:
- 10452111
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- International Journal of Quantum Chemistry
- Volume:
- 121
- Issue:
- 10
- ISSN:
- 0020-7608
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Access to benzofuran‐2(3H)‐one derivatives from readily available substrates under mild conditions is crucial in the pharmaceutical and plastics industries. We identified (Z)‐3‐(2‐phenylhydrazineylidene)benzofuran‐2(3H)‐one (P) during the recrystallization of (E)‐2‐(2,2‐dichloro‐1‐(phenyldiazenyl)vinyl)phenol using a 96% ethanol solution. The mechanism of the unexpected substrate conversion leading toPis investigated using density functional calculations. The computations revealed that ethanol is required to initiate the reaction viaTS1E, which involves a concerted deprotonation of ethanol by the basic diaza group of the substrate and an ethoxy group attacking the electrophilic center (Cl2C), with an energy barrier of 28.3 kcal/mol. The resulting intermediate (I1E) is calculated to be unstable and can yield a cyclic chloroacetal adduct with a lower energy barrier of 2.2 kcal/mol via the ring‐closure transition state (TS2E). In the absence of water, the next steps are impossible because water is required to cleave the ether bond, yieldingP. A small amount of water (4% of the recrystallization solvent) can promote further transformation ofI2Evia the transition statesTS3E(∆G‡ = 11.1 kcal/mol) andTS4E(∆G‡ = 10.5 kcal/mol). A comparison of the ethanol/water‐ and only water‐promoted free energy profiles shows that the presence of ethanol is crucial for lowering the energy barriers (by about 5 kcal/mol) for the initial two steps leading to the cyclic chloroacetal (I2E), whereas water is then required to initiate product formation.more » « less
-
Bis(triphenylsulfonium) tetrachloridozinc(II), (C18H15S)2[ZnCl4] (I), bis(triphenylsulfonium) tetrachloridocadmium(II), (C18H15S)2[CdCl4] (II), and bis(triphenylsulfonium) tetrachloridomercury(II) methanol monosolvate, (C18H15S)2[HgCl4]·CH3OH (III), each crystallize in the monoclinic space groupP21/n. In all three structures, there are two crystallographically independent triphenylsulfonium (TPS) cations per asymmetric unit, each adopting a distorted trigonal–pyramidal geometry about the S atom (S—C bond lengths in the 1.77–1.80 Å range and C—S—C angles of 100–107°). The [MCl4]2–anions (M= Zn2+, Cd2+, Hg2+) are tetrahedral; their M—Cl bond lengths systematically increase from Zn2+to Hg2+, consistent with the larger ionic radius of the heavier metal. Hirshfeld surface analyses show that H...H and H...C contacts dominate the TPS cation environments, whereas H...Cl and S...Minteractions anchor each [MCl4]2–anion to two surrounding TPS cations. Weak C—H...Cl hydrogen bonds, as well as inversion-centered π–π stacking, generate layers in (I) and (II) and dimeric [(TPS)2–HgCl4]2assemblies in (III).more » « less
-
Abstract MXenes are a new family of two-dimensional carbides and/or nitrides. Their 2D surfaces are typically terminated by O, OH and/or F atoms. Here we show that Ti3C2Tx—the most studied compound of the MXene family—is a good acid catalyst, thanks to the surface acid functionalities. We demonstrate this by applying Ti3C2Txin the epoxide ring-opening reaction of styrene oxide (SO) and its isomerization in the liquid phase. Modifying the MXene surface changes the catalytic activity and selectivity. By oxidizing the surface, we succeeded in controlling the type and number of acid sites and thereby improving the yield of the mono-alkylated product to >80%. Characterisation studies show that a thin oxide layer, which forms directly on the Ti3C2Txsurface, is essential for catalysing the SO ring-opening. We hypothesize that two kinds of acid sites are responsible for this catalysis: In the MXene, strong acid sites (both Lewis and Brønsted) catalyse both the ring-opening and the isomerization reactions, while in the Mxene–TiO2composite weaker acid sites catalyse only the ring-opening reaction, increasing the selectivity to the mono-alkylated product.more » « less
-
Abstract We have been interested in the development of rubisco‐based biomimetic systems for reversible CO2capture from air. Our design of the chemical CO2capture and release (CCR) system is informed by the understanding of the binding of the activator CO2(ACO2) in rubisco (ribulose‐1,5‐bisphosphate carboxylase/oxygenase). The active site consists of the tetrapeptide sequence Lys‐Asp‐Asp‐Glu (or KDDE) and the Lys sidechain amine is responsible for the CO2capture reaction. We are studying the structural chemistry and the thermodynamics of CO2capture based on the tetrapeptide CH3CO−KDDE−NH2(“KDDE”) in aqueous solution to develop rubisco mimetic CCR systems. Here, we report the results of1H NMR and13C NMR analyses of CO2capture by butylamine and by KDDE. The carbamylation of butylamine was studied to develop the NMR method and with the protocol established, we were able to quantify the oligopeptide carbamylation at much lower concentration. We performed a pH profile in the multi equilibrium system and measured amine species and carbamic acid/carbamate species by the integration of1H NMR signals as a function of pH in the range 8≤pH≤11. The determination of ΔG1(R) for the reaction R−NH2+CO2R−NH−COOH requires the solution of a multi‐equilibrium equation system, which accounts for the dissociation constantsK2andK3controlling carbonate and bicarbonate concentrations, the acid dissociation constantK4of the conjugated acid of the amine, and the acid dissociation constantK5of the alkylcarbamic acid. We show how the multi‐equilibrium equation system can be solved with the measurements of the daughter/parent ratioX, the knowledge of the pH values, and the initial concentrations [HCO3−]0and [R‐NH2]0. For the reaction energies of the carbamylations of butylamine and KDDE, our best values are ΔG1(Bu)=−1.57 kcal/mol and ΔG1(KDDE)=−1.17 kcal/mol. Both CO2capture reactions are modestly exergonic and thereby ensure reversibility in an energy‐efficient manner. These results validate the hypothesis that KDDE‐type oligopeptides may serve as reversible CCR systems in aqueous solution and guide designs for their improvement.more » « less
An official website of the United States government
